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Abstract. In a previous paper, we presented a (noncanonical) Hamiltonian model for the dy-
namic interaction of a neutrally buoyant rigid body of arbitrary smooth shape with N closed
vortex filaments of arbitrary smooth shape, modeled as curves, in an infinite ideal fluid in R

3.
The setting of that paper was quite general, and the model abstract enough to make explicit
conclusions regarding the dynamic behavior of such systems difficult to draw. In the present
paper, we examine a restricted class of such systems for which the governing equations can be
realized concretely and the dynamics examined computationally. We focus, in particular, on the
case in which the body is a smooth sphere. The equations of motion and Hamiltonian structure
of this dynamic system, which follow from the general model, are presented. Following this, we
impose the constraint of axisymmetry on the entire system and look at the case in which the
rings are all circles perpendicular to a common axis of symmetry passing through the center of
the sphere. This axisymmetric model, in our idealized framework, is governed by ordinary dif-
ferential equations and is, relatively speaking, easily integrated numerically. Finally, we present
some plots of dynamic orbits of the axisymmetric system.
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Nomenclature

a: radius vector of sphere,
a =| a |,
Γi: strength of ith ring,
U: translation velocity vector of sphere= Ub in the axisymmetric model,
L: ‘linear momentum’ of body+fluid system= Lb in the axisymmetric model,
M : mass plus added mass of sphere,
Ci: arc-length parameterized curve representing ith ring,
si: arc-length parameter of ith ring,
Ri: radius of ith ring in the axisymmetric model,
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zi: position of (center of) ith ring along axis of symmetry measured from origin
of body-fixed frame,
uR,i: velocity field due to the ith ring in unbounded flow,
uI,i: velocity field of image of ith ring,
uSI,i: self-induced velocity of ith ring, for the axisymmetric model uSI,i =

uLI,ib where LI stands for the local induction approximation,
ΦI,i: velocity potential of uI,i,
ΦB: velocity potential of the Kirchhoff velocity field,
∇ΦB : Kirchhoff velocity field,
ni: principal unit normal field on ith ring,
b: unit binormal field — parallel to axis of symmetry for all rings,
ti: unit tangent field on ith ring,
Nij : ni component of uR,j |Ci

,

Bij : b component of uR,j |Ci

,

Nij : ni component of uI,j |Ci

,

Bij : b component of uI,j |Ci

,

Ni: ni component of ∇ΦB |Ci
,

Bi: b component of ∇ΦB |Ci
,

∂B: surface of sphere.

1. Introduction

The objective of this paper is essentially twofold. First, we want to present the
equations of motion and the Hamiltonian structure of the system consisting of a
neutrally buoyant rigid sphere interacting dynamically with N arbitrarily-shaped
and arbitrarily-oriented vortex rings, modeled as N closed curves in R

3, as in
Figure 1. These equations and Hamiltonian structure will be derived as a special
case of the model described in [1]. The simple geometry of the sphere allows an
explicit representation of the image velocity field of the rings and we will follow
the work of [2] for this. Second, with a view to studying dynamic orbits of such a
system, we focus on the case of an axisymmetric configuration in which the rings
are all circles (in parallel planes) with centers along a common line passing through
the center of the sphere, as in Figure 2. For this axisymmetric case, the system
equations become ordinary differential equations and are thus easily integrated
numerically.

Motivation for constructing models like ours comes in part from locomotion
problems in a fluid environment—both in nature and in engineering— such as, for
example, the swimming of neutrally buoyant fish and the energy-efficient design of
small, autonomous underwater vehicles where coherent vortical structures in the
vicinity of the moving body play an important role. Other potential applications
include transport phenomena of small particles in a fluid environment or of parti-
cles in microgravity environments. These models also provide an opportunity to
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Fig. 1. A schematic view of N vortex rings of arbitrary shape and a neutrally buoyant rigid
sphere interacting with each other in an inviscid, incompressible flow.
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Fig. 2. A schematic view of N coaxial circular vortex rings and a neutrally buoyant rigid
sphere interacting with each other in an inviscid, incompressible flow.

study the far-field acoustics of interactions among vortex rings and a free body in
a simple manner. It is well-known that the far-field acoustics radiated by vortices
and vortex-body interactions can be studied from their near field dynamics [3, 4].
This approach has in fact proven fruitful in cases in which the body is stationary
[2, 5, 6, 7].

The model we present incorporates nonlinear effects and, within an inviscid
framework, fully couples the solid-fluid dynamics. It is of course necessary to de-
velop this model more, in particular to include the effects of fluid viscosity and,
perhaps, turbulence. Nevertheless, as a start, these non-trivial, low-dimensional
models provide a platform for applying the powerful theoretical tools of dynami-
cal systems and nonlinear control to study the complex phenomena of solid-fluid
interactions in locomotion problems.
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2. Equations of motion

2.1. Problem setting and assumptions

The problem setting and underlying assumptions are the same as in [1], however,
for the sake of completeness, we describe these again. We consider a rigid smooth
sphere that is immersed in an ideal (inviscid, incompressible) fluid. The fluid
extends to infinity in all directions away from the sphere. Both the sphere and
fluid have uniform density and, moreover, the sphere is assumed to be neutrally
buoyant, i.e., its density is equal to the density of the fluid which, without loss of
generality, can be taken to be equal to unity. The boundary conditions are the
matching of the normal velocity (“free-slip”) conditions on the sphere’s surface and
the fluid at rest at infinity. The vorticity field of the fluid is compact and assumed
to be a delta distribution supported on N vortex rings of arbitrary shape, non-
intersecting with each other and the sphere. As stated before, the N rings can be
viewed as N arbitrary smooth closed curves in R

3.
The sphere is free to move under the instantaneous pressure field induced on

its surface by the fluid. The motion of the sphere in turn induces a motion of
the fluid. The velocity field of the fluid consists, as per the Hodge decomposition
[8], of two parts: (i) the irrotational, Kirchhoff potential field which satisfies the
normal velocity matching condition on the sphere surface and (ii) the divergence-
free, rotational field due to the N vortex rings in the presence of the sphere with
zero normal velocity on the sphere surface. This second part further decomposes
into two components, namely the velocity field due to the rings in the absence of
the sphere and the velocity field due to the image vorticity inside the sphere which
enforces the zero normal velocity condition on the sphere surface.

2.2. The Lie–Poisson equations of the rings–sphere system

The Lie–Poisson, or the momentum, equations [8] for the rings-sphere system are
obtained from the Lie–Poisson equations in [1] by making the following observa-
tion. For the special geometry of the sphere and for the inviscid, free-slip boundary
conditions in this problem, the angular velocity of the sphere Ω cannot affect and
cannot be affected by the dynamics of the system. Hence, without loss of gen-
erality, set Ω = 0. Consequently, note that the transformation to the body-fixed
frame is just a translation and involves no rotation of the frame.

Following these steps the Lie–Poisson equations of the system are obtained
simply as:

dL

dt
= 0, (2.1)

where

L = MU + P (2.2)
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with M equal to the mass plus added mass of the sphere, U the sphere center-of-
mass velocity and

P =
1

2

N
∑

i=1

Γi

(∮

Ci

(li(si) × ti(si))dsi

)

+
1

2

∫

∂B

l × (n × uV )dA. (2.3)

In the above, Γi is the strength of the ith ring, l denotes the position vector of
points in the body-fixed frame with l = ‖l‖, li is l for points on the ith ring
with li = ‖li‖, Ci is the parameterized curve denoting the ith ring in the body-
fixed frame, ti is the unit tangent vector field on the ith ring, si is the arc-length
parameter for the ith ring and ∂B denotes the surface of the sphere. The term
uV is defined a little later.

Note that for the simple geometry of the sphere the term P can be written as

P =
1

2

N
∑

i=1

Γi

(∮

Ci

(li(si) × ti(si))dsi

)

−
a

2

∫

∂B

uV dA, (2.4)

using the boundary condition (2.8) for uV and where a is the sphere radius. As
in [1], our convention for unit normals is that they point inwards.

2.3. Evolution equations for the rings

The evolution equations for the rings are obtained by applying a fundamental
law of inviscid vortex motion, namely that singular distributions of vorticity (for
example rings, point vortices, and vortex sheets), are convected by the fluid flow,
see [9] (Ch. 1 and 2) for more details. In the body-fixed frame, these equations are

∂Ci

∂t
+ Un

|Ci
=





N
∑

j,j 6=i

uV,j + ∇ΦB + uI,i





n

|Ci

+ (uSI,i)
n

, i = 1, · · ··, N (2.5)

where uV and ∇ΦB are the Hodge components of the total fluid velocity field u,

u = ∇ΦB + uV , (2.6)

satisfying

∇2ΦB = 0 and ∇ · uV = 0, (2.7)

in the infinite fluid domain D and the boundary conditions

∇ΦB · n = U · n and uV · n = 0, (2.8)

on the body surface ∂B. Moreover, at infinity ∇ΦB,uV → 0. The term uV,j |Ci

in (2.5) is just uV due to the jth ring at the location of the ith ring and is given
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by

uV,j |Ci

=
Γj

4π

∮

Cj

tj × (li − lj) dsj

|li − lj |
3

+ uI,j |Ci

≡ uR,j |Ci

+ uI,j |Ci

, (2.9)

where uR,j is the Biot–Savart component and uI,j is the velocity field of the
image vorticity associated with the jth ring and is obtained as the solution to the
following (Neumann) problem

∇× uI,j = 0 in D, (2.10)

uR,j · n = −uI,j · n on ∂B. (2.11)

The term uSI,i is the self-induced velocity field of the ith ring on the ith ring
appropriately regularized. The superscript n in (2.5) simply means that only the
non-parallel components of the vector field contribute to changes in the curve
shape. More precisely, for any vector field X, define its non-parallel components
on Ci by

(X)
n

= ti × (X × ti) .

Finally, we note that ΦB is the potential function of the Kirchhoff field induced
by the motion of the body which has a linear decomposition in terms of the com-
ponents of the velocity U of the body center (of mass) (see [10]):

ΦB = φxu + φyv + φzw, (2.12)

where U ≡ (u, v, w) and the functions φx, φy and φz are given by

φx(l) = −
a3x

2 | l |3
, φy(l) = −

a3y

2 | l |3
, φz(l) = −

a3z

2 | l |3
.

Thus, the final coupled equations of motion of the dynamically interacting
system of a rigid smooth sphere and N vortex rings of arbitrary shape, in a body-
fixed frame, are given by (2.1) and (2.5):

dL

dt
= 0, (2.13)

∂Ci

∂t
+ Un

|Ci
=





N
∑

j,j 6=i

uV,j + ∇ΦB + uI,i





n

|Ci

+ (uSI,i)
n

, i = 1, · · ··, N. (2.14)

Note that the equation for the angular momentum (impulse) A of the system (see
[1]) is decoupled from the above equations and hence plays no role in the dynamics
of the system.

3. Hamiltonian structure of the equations

In this section it will be shown that (2.13) and (2.14), have a Hamiltonian structure
relative to the kinetic energy Hamiltonian of the system and an appropriate Poisson
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bracket.

3.1. Phase space of the system

Before defining the Hamiltonian function we need to define the system phase space.
The system phase space is

P := Pb × PR ≡ R
3∗ × (S\∆), (3.1)

where Pb is the reduced phase space of the sphere in the body-fixed frame and is
identified with R

3∗, the dual of R
3, which is in turn identified with R

3 using the
standard Euclidean pairing. PR is the phase space of the rings in the body-fixed
frame identified with S the space of N (smooth) closed curves in R

3\B minus
∆, the intersection set of the curves. Note that the phase space excludes all
intersections of the rings amongst themselves and with the body.

3.2. The kinetic energy

Consider the kinetic energy of the rings plus sphere system:

K =
1

2

∫

D

〈u,u〉 dV +
1

2
〈U, MbU〉 ,

where Mb is the mass of the sphere. Using the Hodge and the Kirchhoff decom-
positions, this can be written as

K =
1

2

∫

D

〈uV ,uV 〉 +
1

2
〈U, MU〉 .

As noted previously and discussed in detail in [1], uV has singularities in the
self-induced velocity and this results in the divergence of K.

The Hamiltonian function of the system, H : PR → R, is the kinetic energy
K written in terms of the phase space variables and with the self-induced kinetic
energy term appropriately regularized:

H(s,L) =
1

2

N
∑

i=1

∫

D

〈

uV,i,

N
∑

j 6=i

uV,j

〉

dV +
1

2

N
∑

i=1

∫

D

〈uR,i,uI,i〉dV

+ HSI +
1

2

〈

L − P, M−1(L − P)
〉

, (3.2)

where s ≡ (C1, . . . . . . , CN ) ∈ S and HSI is the regularized self-induced kinetic
energy term. In the above, we have used the fact that

∫

D
〈uV,i,uI,i〉dV = 0. Note

that P as defined by equation (2.3) is also a function on S.
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3.3. Poisson brackets

Consider the following Poisson bracket on P ≡ Pb × PR = R
3∗ × S\∆. For

F, G : P → R,

{F, G}P = {F |Pb
, G|Pb

} + {F |Pv
, G|Pv

} , (3.3)

where the first bracket is the trivial bracket and is what the Lie–Poisson bracket
on se(3)∗, see [8], reduces to in the absence of the rotational subgroup.

{

F̃ , G̃
}

(L) = 0 (3.4)

for all F̃ , G̃ : R
3∗ −→ R and L ∈ R

3∗.
The second bracket is the canonical bracket associated with the symplectic form

on the phase space of rings/filaments in R
3 derived by Marsden and Weinstein [11].

As shown in [1], this is given by

{

F̂ , Ĝ
}

(s) =

N
∑

i=1

1

Γi

∮

i

(〈

δF̂

δCi

,ni

〉〈

δĜ

δCi

,bi

〉

−

〈

δF̂

δCi

,bi

〉〈

δĜ

δCi

,ni

〉)

dsi, (3.5)

≡
N
∑

i=1

1

Γi

∮

i

〈

δF̂

δCi

×
δĜ

δCi

, ti

〉

dsi

for functions F̂ , Ĝ : S −→ R. In the above, ni, ti and bi are the unit principal
normal, unit tangent and unit binormal vector fields, respectively, along the ith
ring, and the functional derivatives are also identified with vector fields along the
rings.

Thus, finally, we have:

Lemma. Equations (2.13) and (2.14) form a Hamiltonian system for the Hamil-

tonian function H, given by (3.2), on the Poisson manifold P , defined by (3.1),
equipped with the Poisson bracket (3.3).

Proof. The proof follows from the proof for general smooth body shapes, as given
in [1], by applying Ω = 0 and H independent of A everywhere.

Remarks. Note that as in [1] we are again assuming that a consistency condition
relative to the Hamiltonian structure holds for the regularized self-induction terms.
In other words, the self-induced velocity field satisfies un

SI = δHSI

δCi
× ti everywhere

on the ith ring.

To proceed further with equations (2.13) and (2.14) and study the dynamics,
it is useful to first write down expressions for uI,i (see (2.9)) which the simple
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geometry of the sphere allows. It is also necessary to come up with a choice of
uSI,i which we discuss later.

3.4. Velocity field of the image vorticity

For the structure of uI , the potential field outside the sphere due to the image
vorticity, we follow the technique suggested by Knio and Ting [2]. This work,
drawing from the work of Weiss [13] on the image of a potential field in a sphere,
generalizes the work of [14] in that it is applicable to a general vorticity field and
not just to a field of singular rings or filaments. It also avoids the issue of having
to deal with the structure of the image vorticity in order to obtain uI .

The approach of [2] relies on the observation that the velocity field of the
vorticity in the absence of the sphere is potential in the region B occupied by the
sphere. Thus, Weiss’ formulas for the image of a potential field with singularities
outside the sphere is applicable. This directly gives the image potential field uI

outside the sphere without having to deal with the structure of the image vorticity
inside the sphere as in [14]. Thus, as per Knio and Ting, for any point q lying
outside the sphere:

um
I (q) =

N
∑

i=1

−Γi

4πa

∮

i

〈

Qi(l, li)
∂el

∂xm

+

(

−Xi(l, li)a
2xm + Ai(l, li)

〈

eli ,
∂el

∂xm

〉)

el, eli × ti

〉

dsi,

m = 1, 2, 3 (3.6)

where uI = (u1

I , u
2

I , u
3

I), l = (x1, x2, x3) ≡ (x, y, z) is the position vector of q in a
body-fixed frame, el = l

|l| , eli = li

|li|
, a is the radius of the sphere and l̄i =

∣

∣̄li
∣

∣ eli

is the position vector of the reciprocal point corresponding to the point on the ith
ring with position vector li where

∣

∣̄li
∣

∣ = a2/ |li|.
The non-dimensional coefficients Xi ,Qi and Ai for each ring are defined as

follows:

Qi(l, li) =

∣

∣̄l
∣

∣

2

|li|
∣

∣̄l − li
∣

∣

(

|̄l−li|
|li|

+ 1 − 1

|li|
2

〈

l̄, li
〉

) ,

Xi(l, li) =
|li|
∣

∣̄l
∣

∣

|l|3
∣

∣̄l − li
∣

∣

3
,

Ai(l, li) =

∣

∣̄l
∣

∣

3

|li|
2
∣

∣̄l − li
∣

∣

|l̄−li|
2

|li|
2 + 2

|l̄−li|
|li|

+ 1 −
〈l̄,li〉
|li|

2

(

|l̄−li|
2

|li|
2 +

|l̄−li|
|li|

(

1 −
〈l̄,li〉
|li|

2

))2
.
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Note that the reciprocal points always lie inside the sphere. It should also be noted
that in the above equations the following identity is used:

∂

∂xi

(

l

|l|

)

=
î

|l|
−

xi

|l|3
l.

3.5. Regularization of the self-induced field

Due to the singular nature, i.e. lack of cores, of the N rings there is a well-
known singularity in the self-induced velocity field of each ring (see [9] and [12] for
more details). A simple though somewhat crude fix to regularize the self-induced
velocity field is to use the local induction approximation (see references cited above
for the history of this method). Using this approximation the self-induced velocity
field of the N rings is obtained as [15]:

uSI,i(q) = uLI,i(q) := −
Γiκi(si(q)) log(ci)

4π
bi(si(q)), q ∈ Ci, (3.7)

where t, b and κ represent the unit tangent, unit binormal and curvature fields,
respectively, on the rings, and ci is the cut-off parameter (for the ith ring), as-
sumed constant, appearing in the local induction approximation. Note that the
self-induced kinetic energy term obtained by applying the local induction ap-
proximation, HLI , satisfies the consistency approximation mentioned earlier i.e
un

LI = δHLI

δCi
× ti everywhere on the ith ring (see [15]).

4. Axisymmetric model

A relatively simple case of the sphere-rings model described above is when the
constraint of axisymmetry is imposed. In such an axisymmetric model, the rings
are all circles that lie in parallel planes and whose centers pass through the common
axis of symmetry which also passes through the center of the sphere, as shown in
Figure 2. Each ring in such a model is governed by only two variables, the ring
radius and its position along the axis, and the ring evolution equations (2.5) reduce
to ordinary differential equations.

4.1. Ring-centered coordinates

To study the axisymmetric sphere-rings model, it is useful to decompose the posi-
tion vector of the points on the ring into two parts as follows:

li(s, t) = −Ri(t)ni(s) + zi(t)b

where zib is the position vector of the center of the ith circular ring with respect
to the origin of the body-fixed frame (note that b is the same for all rings) and
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Rini is the vector connecting the center of the ith ring to the points on the ith
ring, Ri being the radius of the ring. Note that the principal normals ni point
towards the center of curvature, i.e. towards the axis of symmetry.

4.2. Equations of motion

In the ring-centered coordinates, the term P in (2.4) becomes

P = Pb, (4.1)

=

(

N
∑

i=1

ΓiπR2

i −
a

2

N
∑

i=1

Ii(zi, Ri; a, Γi)

)

b, (4.2)

where
∫

∂B

uV,idA =: Iib (4.3)

and equation (2.2) reduces to a relation between scalars

L = MU + P, (4.4)

where L =| L | and P =| P |.
Next, we note that due to the axisymmetry of the model, for j 6= i,

uR,j |Ci

= Nij(Ri, Rj , zi, zj ; Γi, Γj , a)ni

+ Bij(Ri, Rj , zi, zj ; Γi, Γj , a)b.

Similarly,

uI,j |Ci

= Nij(Ri, Rj , zi, zj ; Γi, Γj , a)ni

+ Bij(Ri, Rj, zi, zj; Γi, Γj, a)b

and

∇ΦB |Ci
= Ni(Ri, zi; Γi, a)ni

+ Bi(Ri, zi; Γi, a)b.

Note that none of the fields have a tangential component (i.e. swirl).
The equations of motion (2.13) and (2.14) for this model reduce to the following

system of ODE in the variables (L, Ri, zi):

dL

dt
= 0, (4.5)

dzi

dt
=

1

M

(

−L +

N
∑

i=1

ΓiπR2

i −
a

2

N
∑

i=1

Ii(zi, Ri; a, Γi)

)

(4.6)

+

N
∑

j,j 6=i

Bij +

N
∑

j=1

Bij + Bi + uLI,i,
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dRi

dt
= −





N
∑

j,j 6=i

Nij +

N
∑

j=1

Nij + Ni



 . (4.7)

4.3. Dynamic orbits

Preliminary simulations of the axisymmetric model, with N = 2 and with the
ring strengths equal and the initial radii equal, are shown in Figures 3, 4 and 5.
For all the cases shown, a = 1, L = 0 and the magnitude of the local-induction
velocity (3.7) is set equal to a constant over the instantaneous radius Ri of each
ring. In Figure 6, N = 2 but the ring strengths are unequal and the initial radii
are also unequal. In Figure 7, a case with N = 3 is shown.

In Figures 3 and 5, the rings start on the same side of the sphere and fairly
rapidly settle into a leapfrogging sequence while moving away from the sphere.
The sphere velocity at any instant, which is determined by (4.4), asymptotically
reaches a constant value as the rings move away. Moreover, in Figure 5, both rings
pass over the sphere and this passage causes transient oscillations in the sphere
velocity. In Figure 3, on the other hand, the rings do not pass over the sphere and
the oscillations in the sphere velocity are not seen. In Figure 4, the rings start
on opposite sides of the sphere but one ring passes over the sphere and the two
rings eventually translate together in a direction opposite to that of the sphere
motion. In Figure 6, an example with unequal initial values of the ring radii and
ring strengths is presented. The addition of a third ring leads to more interesting
and complicated dynamics as seen in Figure 7.

5. Conclusion and future directions

A nonlinear, fully-coupled dynamical model of a neutrally buoyant sphere inter-
acting with thin vortex rings in an inviscid framework is presented in this paper.
The Hamiltonian structure and equations of motion follow from those of a more
general model [1]. Preliminary simulations of dynamic orbits of the system with
the constraint of axisymmetry imposed are also presented.

The qualitative behavior of the dynamic orbits plotted in Figures 3, 4 and 5 is
similar to a 2D version of the axisymmetric model considered in [16]. However, as
stated earlier, in all these models due to the absence of viscosity certain important
dynamical effects can be missed. For example, in the experimental study of [17]
in which a vortex ring from a piston cylinder device was made to pass over a
neutrally buoyant sphere in a water tank, PIV measurements showed secondary
vorticity being shed from the sphere surface as the primary ring passes over it.
Thus, a goal for the immediate future is to extend the models presented in this
paper to incorporate such viscous effects. Another important goal is to do a more
detailed analysis of equilibria, stability and bifurcations as was done in the 2D
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Fig. 3. Dynamic orbits of two coaxial circular vortex rings and a neutrally buoyant rigid
sphere for the case R1(0) = R2(0) = 1, z1(0) = 2, z2(0) = 2.5, Γ1 = Γ2 = 1 and L = 0. The top

plot shows zi vs. t, the middle plot Ri vs. t and the bottom plot U vs. t.
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Fig. 4. Dynamic orbits of two coaxial circular vortex rings and a neutrally buoyant rigid
sphere for the case R1(0) = R2(0) = 1, z1(0) = −1.5, z2(0) = 1.5, Γ1 = Γ2 = 1 and L = 0. The

top plot shows zi vs. t, the middle plot Ri vs. t and the bottom plot U vs. t.
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Fig. 6. Dynamic orbits of two coaxial circular vortex rings and a neutrally buoyant rigid
sphere for the case R1(0) = 1.1, R2(0) = 1, z1(0) = −1.5, z2(0) = 1.5, Γ1 = 1, Γ2 = −1 and
L = 0. The top plot shows zi vs. t, the middle plot Ri vs. t and the bottom plot U vs. t.
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case (with a circular cylinder and point vortices) in [16] and [18]. For applications
to transport phenomena it is also important to extend the models to include many
(moving) solid bodies in the flow and, in principle, this extension can be worked
out using similar ideas as in this paper. Development of control theoretic models,
as in [19] and [20], which can be important for some of the applications mentioned
in the Introduction, is another avenue of future research.
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