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ABSTRACT
Applying Lighthill’s acoustic analogy equation to temporally-developing mixing layers, we
derived a direct relation between the near-field dynamics, in terms of pressure work, and the far-
field sound. The sound radiation predicted by the new model was compared to the direct
numerical simulation result, and they agreed well in all stages of vortex dynamics development
in mixing layers: roll-up, pairing, merging, saturation, and viscous damping. Using the new
formulation, we explained the mechanism for sound generation from the considered flow, and
depicted general topological structures for the distribution of sound sources. Though the
dynamics is different for vortex roll-up and vortex pairing, the same mechanism for sound
generation is suggested by similar topological structures of the sound sources defined here.

1. INTRODUCTION
Noise radiation by free shear flows is one of the most fundamental problems in
aeroacoustic community [1–3]. Since Lighthill’s pioneer work [4, 5] more than fifty
years ago, the acoustic features of shear flows have been studied experimentally [6, 7]
and numerically [8–12] in many literatures. It is commonly agreed that there are two
types of sound sources existed in subsonic shear layers [7, 13]: 1) large-scale coherent
structures (e.g. vortex roll-up and pairing) dominated by instability waves, which
produce low-frequency noise; 2) turbulent fine-scale structures, which produce
broadband-frequency noise. However, the definition of sound sources is not
straightforward in most cases, and it is hard to separate the acoustic features from
general hydrodynamic features with their closely-coupled relation. The acoustic
analogy first suggested by Lighthill [4] is promising in identifying sound sources by
rewriting the Navier-Stokes equations as a wave equation with a lump of source terms.
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Since then, the method has been advanced through many efforts to separate sound
sources from the interaction with hydrodynamics [14–18]. Despite great successes of
above formulations in their respective applications, it remains hard to provide a simple
explanation of sound generation mechanism for most flows.

In this paper, a simple sound source model is derived for temporally-developing mixing
layers. The new model reproduces the simulation results accurately in an extremely simple
form. More importantly, its simplicity makes possible to explain the sound generation
mechanism in a direct manner. In the following sections, we first derive the new model in §2,
then describe numerical simulation details for the mixing layer in §3. The comparison
between the results from simulation and acoustic analogy is conducted in §4. The same
section also includes the discussion (e.g. using topological analysis) of sound generation
mechanism for temporally-developing mixing layers. Finally, the conclusion is in §5.

2. ACOUSTIC ANALOGY MODEL
The classical Lighthill’s equation [4, 19] is

(1)

where the density variation ρ′ is described as sound waves being radiated from a
nominal source term. The Lighthill’s tensor Tij is defined by

(2)

which includes contributions from the momentum flux tensor ρuiuj , the viscous stress
τij , and the entropy (p − ρa2

∞ ). With an accurate description of Tij , the sound
calculated from (1) is exact. For a temporally-developing mixing layer, Lele et al. [21]
suggest that the far-field sound is essentially a plane wave. So that, an average along the
streamwise direction (and the spanwise direction for three-dimensional cases) reduces
(1) to only one dimension in space,

(3)

where 〈·〉 is the spatial average along x. If we choose an arbitrary observation point (Y, t)
at the far field, using Green’s function, we can solve the density fluctuation ρ′(Y, t) as an
integration of all the contributions from sources at each location y and time t′, such as

(4)

It is noticed that there is a minimum time delay for wave propagation |Y − y/a∞. For
mixing layers with weak compressibility and a constant temperature, we can neglect the
viscous stress term and entropy term from Lighthill’s tensor and get Tyy = ρv2.
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Applying reciprocal theorem [22], Golanski et al. suggest an acoustic analogy
formulation for temporal-developing mixing layers [20],

(5)

The acoustic analogy formulation (5) in its simple form shows that the far field sound
is directly determined by the growth rate of perturbation kinetic energy in temporally-
developing mixing layers. However, the same as most other formulations, (5) is
incapable of explaining the exact mechanism for local events to generate sound. Our
intention is to formulate a new model with simple sound sources carrying clear physical
meaning, so that, we can easily see the fundamental mechanism of noise generation by
mixing layers.

Applying the same assumptions of weak compressibility and constant temperature,
we first substitute the density ρ with its mean value ρ– as it is required for further
simplification. As shown in the schematic figure 1, sound sources are expected only in
a finite near-field range [−Ls, +Ls ], so that, (5) is slightly simplified to
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Figure 1: Schematic of the sound generation from temporally-developing mixing
layers: the gray areas are computational sponge zones, and sound sources
are assumed to reside only between −Ls and +Ls.



(6)

If the distance Y is large comparing to the dimension of the flow field and the wave
length [23, 24], we can approximate the time delay factor Y − y| /a∞ by Y | /a∞,
such that,

(7)

The growth rate of perturbation kinetic energy can then be obtained

approximately from the order analysis of y-direction momentum equation for general
compressible flows,

(8)

The flow variables q = (ρ, u, v, p) can be separated to a parallel base flow q– = (ρ–,
U–(y), 0, p–) and a small perturbation q′ = (ρ′, u′, v′, p′) as q = q– + q′. Here, only
U
–

is considered a function of y. Both the pressure and density of the base flow are
treated as constants: p– = p∞ and ρ– = ρ∞. Since there is no y-direction velocity for
the base flow, we have v′ = v. Keeping only the first-order terms, we get the
perturbation equation,

(9)

Multiplying both sides by v, then, we have

(10)

Being averaged along x, it becomes

(11)ρ ρ
τ τ∂

∂
= −

∂ ′

∂
−

∂
∂

+
∂ ′

∂
+

∂ ′

∂



t
v v p

y
Uv v

x
v

x y
yx yy1

2
2 






,

ρ ρ
τ∂

∂











= −
∂ ′

∂
−

∂
∂

+
∂ ′

t
v v p

y
Uv v

x
v y1

2
2 xx yy

x y∂
+

∂ ′

∂













τ
.

ρ ρ
τ τ∂

∂
+

∂
∂

= −
∂ ′

∂
+

∂ ′

∂
+

∂ ′

∂







v
t

U v
x

p
y x y

yx yy




.

ρ ρ ρ
τ τ∂

∂
+

∂
∂

+
∂
∂

= −
∂
∂

+
∂

∂
+

∂

∂





v
t

u v
x

v v
y

p
y x y

yx yy







.

1

2
2ρv

′( ) =
∂

∂ ′
∞ ′= −

−

+

∞

∫ρ ρY t
a t

v dy
t t

Y

a

L

L

s

s, .
1 1

23

2

′( ) =
∂

∂ ′
∞ ′= −

−−

+

∞

∫ρ ρY t
a t

v dy
t t

Y y

a

L

L

s

s, .
1 1

23

2

450 A simple model for mechanism study of sound generation in mixing layers



where becomes zero with periodic condition being applied along x. If the

viscous effect to acoustics is also neglected here, we end up with a simple equation,

(12)

Finally, substituting (12) into (6) and (7), we get two new acoustic analogy models for
the far-field sound of temporally-developing mixing layers,

(13)

and

(14)

where AA1 is for general source distribution and AA2 is for large Y as in (7). The new
source term 〈−v∂p′/∂y〉 in AA1 and AA2 indicates a simple mechanism for sound
generation: The pressure gradient ∂p′/∂y provides a force of compression or expansion,
and such a force together with the same-direction velocity v produces the power term
for sound generation. The entire source term can be therefore regarded as localized
pressure chambers which work in the same way as of speakers. There is also
engineering convenience from AA2: to calculate sound distribution at a fixed time, only
a snapshot at an earlier time with spatially-resolved information is required, while most
of acoustic analogy models including (5) require both spatially-resolved information
(for integration) and temporally-resolved information (for time derivative).

It is noticed that Lighthill has made a similar effort in his earlier work [5] to achieve
a simple pressure-related term, which was described as “the product of the pressure and
the rate of strain” (see equation (14) in his paper [5]). Among all acoustic analogy
models, such a pressure-related term shows the most similarity to our AA1 formulation
in an ensemble of physical presentation and mathematical simplicity. For comparison,
we applied Lighthill’s equation (14) of [5] to our setup of temporally-developing mixing
layers and obtained the following analogy equation:
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Mathematically, the difference between (13) and (15) is that the latter neglects the term
∂(p′v)/∂y, which brings some errors as shown later in the numerical simulation test.
Though the above models are all in two-dimensional space, the extension to three-
dimensional cases is straightforward with periodic boundary condition being applied
along both streamwise and spanwise directions [25].

3. NUMERICAL SIMULATION
The basic configuration of a temporally-developing mixing layer is sketched in figure 1.
The Mach number of lower and upper flows are M1 = 0.4 and M2 = −0.4 respectively,
and the Reynolds number based on far-field sound speed and initial vorticity thickness
is Re = ρ∞a∞δω/µ = 500. The initial flow profile is U0 = M1 + (M2 − M1)erfc(−y)/2
being super-posed with small perturbations of the most unstable eigenfunctions at the
fundamental frequency and its subharmonic frequency, which are both computed from
linear instability analysis.

The computational domain along x direction is [0, 26.46] with periodic condition; and
it is [−300, 300] along y including large sponge zones at both ends, [−300, −100] and
[100, 300]. The near-field region for source integration is [−Ls, + Ls ] = [−30, +30]. All
the lengths are scaled by the initial vorticity thickness δω. Other quantities shown in later
figures are also scaled by corresponding characteristic properties without being mentioned
again [26]. Spectral method was used for x-direction derivatives, the fourth-order
dispersion-relation-preserving scheme [27] was used for derivatives along the y-direction,
a fourth-order Runge-Kutta algorithm was used for time advancement. The algorithm and
the corresponding code have been extensively validated in our previous works [28–30].

4. RESULTS AND DISCUSSION
First, the results from different models (i.e. AA1, AA2, and AAL) are compared to
the data from direct numerical simulation (DNS). Figure 2 shows the time history of
〈ρ′〉 at the far field Y = −90. Three development stages of far-field sound can be
identified according to the development stages of vortex dynamics (with a fixed time
delay): stage I – vortex roll-up; stage II – vortex pairing/merging/saturation; stage III –
viscous damping. Using DNS data as the benchmark, we plot other four results
respectively from Golanski et al.’s formulation (5), AA1, AA2, and AAL. Overall,
the results from all formulations agree well with the DNS result (figure 2a). Four
critical moments A, B, C, D are marked in the figure: point A has a fixed time delay
|Y /a∞ from the moment when the energy of the fundamental frequency reaches the
maximum growth rate; point B is |Y /a∞ after the first saturation moment when the
energy of the fundamental frequency reaches its maximum; point C is |Y /a∞ after
the moment when the energy of the subharmonic reaches the maximum growth rate;
point D is |Y /a∞ after the second saturation moment when the energy of the sub-
harmonic reaches its maximum. Physically, points A and B are during the stage of
vortex roll-up, and points C and D are during the stage of vortex pairing. When we
check the zoom-in details of points A and B (figure 2b), there is a small but
consistent difference between DNS and all model results. Apparently, such
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difference mainly comes from the approximation of removing viscous and entropy
terms from Lighthill’s tensor in (5) instead of other new assumptions introduced
later. Once the vortices are developed (stage II), the effects from viscosity and
entropy get smaller, so, the zoom-in details of points C and D (figure 2c) show better
agreement. However, for stage II, as the whole mixing area (e.g. shear layer
thickness) getting larger, the sound sources distribute in a larger area too. Thus,
neglecting the time-delay difference by source distribution in AA2 results in a
slightly less accurate result. For all points A, B, C, and D, the accuracy of AAL is
less than AA1 and even AA2. This is not to our surprise, since Lighthill’s derivation
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for AAL [5] has made more aggressive approximation than the current derivation for
AA1 and AA2.

Figure 3 then shows the distribution of the source term 〈−v∂p′/∂y〉 at different time
moments A, B, C, and D. It is shown that the sound sources always concentrate near
vortices in a small region along y direction. The sources at points A and B are more
compact than those at points C and D. This is the reason why AA2 can capture the
sound more accurately in the stage I than in the stage II. The overall strength of sound
sources is stronger in the stage of vortex pairing (i.e. points C and D) than in the stage
of vortex roll-up (i.e. points A and B). Within the same stage, the distribution of sound
sources is more symmetric for points B and D, therefore, there can be a perfect
cancellation of sound. During the whole process of vortex pairing/merging, such
symmetric and asymmetric distributions alternate and result in the variation of far-field
sound strength in a quasi-periodic manner.

If we decouple the term −v∂p′/∂y to its velocity component v and force (pressure
gradient) component ∂p′/∂y, as shown in figure 4, the positive and negative velocity
components are on the right and left sides of vortices, and the positive and negative force
components are instead on the bottom and top sides of vortices. Such a distribution
makes the maximum amplitude for the combined term to be at the overlapped corners.
This general distribution indicates that any change of velocity or pressure field can result
in a change to the higher order combined term at the corners.
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Throughout the entire developing history, the same topological structure exists for
the combined source term and the individual components as sketched in figure 5.
Such a consistent manner of the local sound source distribution/interaction, even for
very distinct dynamic events (e.g. vortex roll-up and pairing), can be a clear indication
of the same sound-generation mechanism behind different vortex dynamics in mixing
layers.

5. CONCLUSION
In summary, we derived a simple acoustic analogy model for temporally-developing
mixing layers. The new model shows a direct connection between the far-field sound
and the near-field “work term”, which includes the contribution from the y-direction
velocity and the pressure gradient along the same direction. The model can accurately
predict the far-field sound from a two-dimensional temporally-developing mixing layer.
The topological structure depicted in the simple definition of sound sources shows
consistent pattern throughout the mixing layer’s different developing stages. Such
similarity shows the same sound generation mechanism for vortex roll-up and pairing,
though their dynamic behavior is distinct.
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