CMOS ACTIVE PIXEL SENSOR

BY

NITIN N. VELUDANDI

Master’s Technical Report

Electrical Engineering

New Mexico State University

Las Cruces, New Mexico

August 2006

Advisor: Paul M Furth
“CMOS Active Pixel Sensor,” a master technical report prepared by Nitin N Veludandi, in partial fulfillment of the requirement for the degree, Master of Science in Electrical Engineering, has been approved and accepted by the following:

__
Linda Lacey
Dean of the Graduate School

__
Paul M. Furth
Chair of the Examining committee

__
Date

Committee in charge:

 Dr. Paul M. Furth, Chair

 Dr. Steve Stochaj

 Dr. Jeffrey Beasley
Dedicated to ma, dad, nikki, neellakka, nishananna, kittubawa peddamma and peddananna
ACKNOWLEDGEMENTS

I want to thank and pay my regards to my advisor Dr. Paul M. Furth for his guidance and for giving me the opportunity to work under him.

I would also like to thank Dr. Steve Stochaj for helping me to understand the DE2 board and concepts of VHDL. I am also grateful for his help during building of the test setup.

I also want to thank Dr. Jeff Beasely for agreeing to be on my defense committee.

I wish to thank Dr. Jaime Ramirez-Angulo for his guidance in the VLSI field and for helping me to understand the basic concepts of VLSI design.

I also want to thank Sreeker Reddy, Vamsy P.Ponnapureddy and Aditya Rayankula for helping me during my thesis.
VITA

May 29, 1982
Born in Hyderabad, A.P, India

May 2004
Bachelor of Technology (B.Tech.) in Electronics and Computer Engineering from Jawaharlal Technological University, India

August 2005-May 2006
Graduate Research Assistant, Department of WERC, New Mexico State University

August 2005-May 2006
Graduate Teaching Assistant, Department of ECE, New Mexico State University

Field of Study

Major Field: Electrical Engineering (VLSI)
ABSTRACT

CMOS ACTIVE PIXEL SENSOR

BY

NITIN NARESH VELUDANDI

Master of Science in Electrical Engineering
New Mexico State University
Las Cruces, New Mexico, 2006
Dr. Paul M. Furth, Chair

The aim of this project is to build a chip that will detect the light incident on it and convert the image into analog voltages. This is implemented using a 32 x 32 array of pixels, each pixel consisting of a photodiode (photo sensor) and circuitry to read the data from the photodiode.

The Active Pixel Sensor designed uses a concept called Correlated Double Sampling to reduce the pixel fixed-pattern noise. The difference between the reset value and the integrated photo value is called the correlated double sample. The difference is computed outside the chip.

The voltage values (reset and photo) are read out using digital circuitry. A 5 x 32 decoder is used to select a single row at a time and a 32 x 1 multiplexer is used to select a single column at a time. The input select lines to the multiplexer and decoder are the outputs from a 12-bit counter. The counter runs at a 2MHz clock frequency.
The outputs of the chip are the analog sample voltages coming out at a 2 MHz sampling frequency. These voltages are converted to digital voltages and are analyzed to regenerate the image incident on the sensor.

A data acquisition system has been developed to test the sensor. The system consists of a high-speed A/D converter running at 30Msps with 3.3V power supply. This data is collected by the Altera DE2 board. The DE2 board includes an FPGA chip and an SRAM cell. The FPGA is programmed using VHDL to store the data in SRAM. The data from the SRAM is transferred to the host computer via a USB port using software provided by the manufacturer, called the DE2 Control Panel.
Index

1 INTRODUCTION ... 1
 1.1 PHOTO SENSOR ... 1
 1.2 IMAGE SENSOR ... 1

2. BACKGROUND ... 4
 2.1 CCD IMAGE SENSORS .. 4
 2.2 CMOS IMAGE SENSORS ... 4
 2.2.1 Passive Pixel Sensor .. 5
 2.2.2 Active Pixel Sensor .. 6
 2.3 IMAGE SENSOR RESOLUTION .. 6
 2.4 IMAGE SENSOR ASPECT RATIO ... 7
 2.5 FRAME RATE .. 7
 2.6 COLOR FIDELITY .. 7
 2.7 CMOS IMAGE SENSOR NOISE .. 8
 2.7.1 Fixed Pattern (Spatial) Noise ... 8
 2.7.2 Temporal Noise .. 9
 2.7.2.1 Pixel Noise .. 9
 2.7.2.2 Column Amplifier Noise .. 10
 2.7.2.3 Programmable Gain Amplifier Noise ... 11
 2.7.2.4 ADC Noise .. 12
 2.7.2.5 Dynamic Range ... 12
 2.8 CMOS IMAGE SENSOR ARCHITECTURE ... 12
 2.8.1 3T Architecture .. 13
 2.8.2 4T/5T Architecture ... 14

3 DESIGN AND SIMULATIONS ... 16
 3.1 ACTIVE PIXEL SENSOR ... 16
 3.2 PHOTO PIXEL .. 18
 3.3 COLUMN CIRCUIT ... 21
 3.4 DECODER 5 X 32 .. 24
 3.5 32 X 1 MULTIPLEXER .. 28
 3.5.1 4 x 1 Multiplexer .. 30
 3.6 12-BIT COUNTER .. 31
 3.6.1 Half Adder .. 34
 3.6.2 THE D-FLIP FLOP ... 36
 3.7 THE VARIABLE INTEGRATION (VI) LOGIC ... 38
4 TEST SETUP AND PROCEDURE .. 41
 4.1 CHIP DESCRIPTION: .. 41
 4.2 CHIP DESCRIPTION .. 41
 4.3 TEST PROCEDURE .. 45
 4.3.1 Test Procedure of Digital Circuits: .. 45
 4.3.2 Test procedure of a single pixel: ... 46
 4.3.3 Test Procedure of the column circuit: .. 47
 4.4 DATA ACQUISITION SYSTEM SETUP: .. 48
 4.4.1 A/D Setup ... 48
 4.4.2 Prototype Board Setup .. 50
 4.4.3 DE2 Setup: .. 50
 4.4.4 Test Procedure for VHDL Code: ... 51
 4.4.5 Test Procedure for MATLAB Code: ... 52
 4.5 TEST PROCEDURE FOR THE ACTIVE PIXEL SENSOR .. 53

5 TEST RESULTS AND CONCLUSIONS ... 56
 5.1 TEST RESULTS OF TEST PHOTO PIXEL ... 56
 5.2 TEST RESULTS FOR THE COLUMN CIRCUIT: ... 57
 5.3 TEST RESULTS OF DIGITAL CIRCUITS .. 58
 5.4 TEST RESULTS OF ACTIVE PIXEL SENSOR .. 60

THE DARK LINE WHICH APPEARS ON THE 31ST COLUMNS SHOWS THAT THERE IS A COLUMN FAIL. THE
COLUMN FAIL IS NOT DUE CIRCUIT, ITS DUE TO THE RETRIEVAL OF THE DIGITAL DATA FROM THE SRAM IN
THE DE2 BOARD. THE WHITE SPOTS IN IMAGE INDICATE THAT THE PIXELS HAVE REACHED TO
SATURATION. IN FUTURE MORE CONSTANT LIGHT SOURCED SHOULD BE USED TO HAVE A UNIFORM IMAGE.
A CONCAVE LENS SHOULD BE USED TO FOCUS THE IMAGE ON THE SENSOR IN ORDER TO GET MORE
ACCURATELY DISTINGUISHABLE IMAGE. ... 62

5.5 CONCLUSIONS AND FUTURE WORK .. 63

REFERENCES ... 65
APPENDIX A: .. 66
APPENDIX B: .. 68
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Modes of Sensor Operation</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Truth Table for 5 x 32 Decoder</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Truth Table for 5-input NAND Gate</td>
<td>40</td>
</tr>
<tr>
<td>3.4 Truth Table for 4 x 1 Multiplexer</td>
<td>43</td>
</tr>
<tr>
<td>3.5 Truth Table for XOR Gate</td>
<td>47</td>
</tr>
<tr>
<td>3.6 Truth Tale for 2-input AND Gate</td>
<td>47</td>
</tr>
<tr>
<td>3.7 Truth Table of Reset and Tx Signal for Different Integration Times</td>
<td>50</td>
</tr>
<tr>
<td>4.3 Pin Table</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 CCD Image Sensor Block Diagram</td>
<td>15</td>
</tr>
<tr>
<td>2.2 CMOS Image Sensor Block Diagram</td>
<td>16</td>
</tr>
<tr>
<td>2.3 3T Architecture</td>
<td>26</td>
</tr>
<tr>
<td>2.4 4T/5T Architecture</td>
<td>28</td>
</tr>
<tr>
<td>3.1 Block Diagram of Active Pixel Sensor</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Simulation Model of Photodiode</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Schematic of Photodiode</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Simulation Results of Photo Pixel</td>
<td>34</td>
</tr>
<tr>
<td>3.5 Column Circuit</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Schematic of Voltage Follower</td>
<td>36</td>
</tr>
<tr>
<td>3.7 AC Response of the Differential Amplifier</td>
<td>37</td>
</tr>
<tr>
<td>3.8 Transient Response of Voltage follower</td>
<td>38</td>
</tr>
<tr>
<td>3.9 Block Diagram of Decoder and Each Cell Schematic</td>
<td>39</td>
</tr>
<tr>
<td>3.10 Schematic of 5-input NAND Gate</td>
<td>41</td>
</tr>
<tr>
<td>3.11 Simulation Results of 5 x 32 Decoder for bits D0-D7</td>
<td>42</td>
</tr>
<tr>
<td>3.12 Block Diagram of 32 x 1 Multiplexer</td>
<td>43</td>
</tr>
<tr>
<td>3.13 Schematic of 4 x 1 Multiplexer</td>
<td>44</td>
</tr>
<tr>
<td>3.14 Simulation Results of 4 x 1 Multiplexer</td>
<td>45</td>
</tr>
<tr>
<td>3.15 Block Diagram of 12-bit Counter</td>
<td>46</td>
</tr>
<tr>
<td>3.16 Single Cell of Counter</td>
<td>46</td>
</tr>
<tr>
<td>3.17 Schematic of a Half Adder Circuit</td>
<td>47</td>
</tr>
<tr>
<td>3.18 Simulation Results of 2-input XOR Gate</td>
<td>48</td>
</tr>
</tbody>
</table>
3.19 Simulation Results of 2-input AND Gate ... 48
3.20 Schematic of D-Flip Flop ... 49
3.21 Simulation Results of D-Flip Flop .. 50
3.22 Simulation Results of 12-bit Counter .. 50
3.23 Boolean Expressions ... 51
3.24 Simulation Results of VI Logic Block ... 52
4.1 Pin Configuration of APS with Test Structures 54
4.2 Testing Single Pixel ... 57
4.3 Pin Configuration of Test Pixel .. 58
4.4 Testing Voltage Follower .. 59
4.5 Pin Configuration of Test Column Circuit .. 59
4.6 Testing Digital Circuits ... 60
4.7 Pin Configuration of Digital Circuits .. 61
4.8 Testing Active Pixel Sensor ... 62
4.9 Pin Configuration of Active Pixel Sensor .. 64
4.10 Test Setup of A/D Converter ... 65
4.11 Pin Configuration of A/D Converter .. 69
5.1 Test Results of Single Pixel ... 70
5.2 MATLAB plot of Single Pixel using 32 x 32 Array 70
5.3 Test Results of Column Circuit ... 71
5.4 Test Results of Reset Signal at 1024μs .. 71
5.5 Test Results of Tx signal ... 71
5.6 Test Results of row Signal ... 72
1 INTRODUCTION

1.1 Photo Sensor

A photo sensor is a transducer which converts light energy to electrical energy. That means a photo sensor converts the photons incident on it to electron flow (current). A photo sensor is made up of semiconductor material, generally silicon, that has a property called photoconductivity. The generation of electrons in an electric field depends on the intensity of light incident on it [WHATI].

The photodiode, bipolar phototransistor, and photo FET (photosensitive field-effect transistor) are the three most commonly used photo sensors. The working of these devices is the same as a regular diode, bipolar transistor and field effect-transistor, respectively. The difference between a photo sensor and an ordinary device (MOS, BJT) is that photo sensors have light as an input. These device have transparent windows that allow light energy to fall on it [WHATI]. The photo sensor used in this project is the photodiode.

1.2 Image Sensor

A device which converts the visual scene to electrical signals is called an image sensor. The main application of image sensors is the digital camera. An image sensor consist of an array of pixels which are characterized by either CCD technology or CMOS technology. Before the existence of CMOS image sensors, CCD cameras were dominant. CCD’s were mainly used in astronomical telescopes, scanners and video camcorders. After CMOS sensors came into existence, CCD reduced in importance, due to the low cost and the ability to integrate different functions in CMOS sensors. CMOS image
sensors have eventually become the image sensor of choice in a large segment of the market. Both CCD and CMOS image sensors capture light on a grid of small pixels on their surfaces. However the processing of the signal and how they are manufactured distinguishes them. [WIKIP]

There are several major types of color image sensors, differing by the means of the color separation:

The Bayer Sensor: The most common and low-cost sensor is the Bayer filter, which passes red, green, or blue light to selected pixels, forming a fixed pattern grid sensitive to red, green, and blue. The values of these color filters are interpolated using a demosaicing algorithm [WIKIP].

The Foveon X3 Sensor: An array of layered sensors is used, where every pixel contains three overlapped phototransducers, each sensitive to the individual colors [WIKIP].

The 3CCD Sensor: Three discrete image sensors are used, where the color separation is done by a dichroic prism. This sensor is considered to be the best in terms of quality, and is more expensive than single-CCD sensors [WIKIP].

The sensor used in this project does not have any color filter array on the pixels. Only black and white images are captured. In general the active pixel sensor designed in this project can only capture the black and monochromatic images.
In this technical report, we outline the design, simulation, and testing of a CMOS active pixel image sensor. Chapter 2 gives the basic background of various types of sensors and their working. Chapter 3 describes the design and simulations of each block of the CMOS Active Pixel Sensor. Chapter 4 gives the test setup and test procedure of the CMOS APS. Chapter 5 has the conclusions and tests results of the sensor.
2. BACKGROUND

2.1 CCD Image Sensors

CCD Image Sensors were invented in 1969 by Bell Laboratories. At the time, digital photography was the major field of application. Upon exposure of the sensor, the charge on the first row (row of pixels) is transferred to the read out register. The read out register signals are fed to an amplifier and then on to an analog-to-digital converter. Once the row has been read, the charges on the readout register row are deleted, the next row is transferred to the first row and this procedure is carried on till last row is read out[SHORT].

2.2 CMOS Image Sensors

Unlike CCD’s CMOS image sensors are manufactured in factories called fabs. The basic difference between CCD’s and CMOS is that in CMOS Image sensors there are circuits which help us to store and read out the photo value whenever needed. CMOS is the highest yielding chip-making process in the world. The latest CMOS processors, such as the Pentium IV, contain almost 55 million active elements. As a result of these

Fig 2.1 CCD Imager Block Diagram [SHORT].
economies of scale, the cost of fabricating a CMOS wafer is one-third the cost of fabricating a similar wafer using a specialized CCD process. Costs are lowered even farther because CMOS image sensors integrate the pixel along with circuitry, unlike CCDs, which requires processing circuits on a separate chip. Early versions of CMOS image sensors had lots of noise problems, and were used mainly in low-cost cameras. However, later versions of the CMOS sensors have relatively low noise and have quality equal to CCD’s.

There are two basic kinds of CMOS image sensors—passive and active.

2.2.1 Passive Pixel Sensor

Passive-pixel sensors (PPS) were the first image-sensor devices used in the 1960s. In passive-pixel CMOS sensors, a photo-sensor converts photons into an electrical charge. This charge is then boosted on chip by an amplifier. Since the charge is carried through several stages, there is a significant amount of noise added to the photo-signal in

Fig 2.2 CMOS Imager Block Diagram

There are two basic kinds of CMOS image sensors—passive and active.
this process. To cancel out this noise, additional processing steps are required, sometimes on chip and sometimes off chip. [SHORT]

2.2.2 Active Pixel Sensor
Active-pixel sensors (APSs) reduce the noise associated with passive-pixel sensors. Each pixel has an extra circuit, an amplifier, which helps cancels the noise associated with the pixel. It is from this concept that the active-pixel sensor gets its name. The performance of this technology is similar to charge-coupled devices (CCDs) and also allows for a larger image array and higher resolution [SHORT]. The Image sensor used in this project to capture an image is an Active Pixel Sensor.

2.3 Image Sensor Resolution
Image resolution is a measurement of how sharp images are. The most professional digital cameras have a total 12-million pixels (3000 x 4000). The human eye has 120 million pixels and 35mm film has 20 million pixels. These values are difficult to match by a CMOS imager, but the technology is getting closer to those numbers [SHORT].

A description of the screen display (that is, the number of pixels on a screen) introduced the term “resolution" in the computer world. For example, a screen may have 1024 pixels horizontally and 768 pixels vertically. The resolution of the active pixel sensor in this project is 32 x 32. However, to photographers, and for the optical community, resolution is the ability of a device to resolve lines such as those found on a test chart [SHORT].
2.4 Image Sensor Aspect Ratio

The ratio of image height to image width defines the aspect ratio. This ratio is always represented in the form $W:H$ where W is the width and H is the height. Most image sensors fall in between the equality ratio (1:1) and the 35mm film ratio (1.5:1). The aspect ratio of a sensor determines the shape and proportions of the image taken. Images of different aspect ratio can be resized by a concept called cropping. Cropping is a code generated (for example, in MATLAB) to resize the images to the required aspect ratio. Sometimes we may lose data or clarity by cropping. The aspect ratio used in this project is 1:1 (32 rows and 32 columns).

2.5 Frame Rate

Frame rate is the rate at which an entire image is taken, meaning, how fast the image is first acquired by the sensor and then read out. The frame rate can also be defined as the inverse of the number of images taken in one second. The term is mostly used in video cameras, computer graphics and in motion capture systems. The frame rate is most often expressed in frames per second (fps) or simply, Hertz (Hz). This project has a frame rate of 976.5 Hz.

2.6 Color Fidelity

The ability to replicate colors of an image in a real scene by a sensor is called color fidelity. In an imaging world, it is essential to maintain the flexibility to allow color to be graded for the desired image quality. Color digital imaging is a complicated process due to the fact that electronic imagers are monochromatic. The difference between red photons and blue photons is distinguished by silicon through color filters on each of the pixels. These color filters pass only specific wavelengths of light based on the filter used.
Post processing after readout is done to replicate the intensity of the color incident on that particular pixel. Different approaches all have different impacts on sensitivity, resolving power, and the design of the overall system [SHORT]. There are no filters used in this project, so the output image is just a core image that differentiates intensities at each pixel.

2.7 CMOS Image Sensor Noise

CMOS image sensors have poor image quality compared to CCD sensors due to high fixed pattern noise (FPN), high dark current and poor sensitivity. Finding out the noise sources and canceling the noise will improve the image quality in CMOS technology. Noise sources are present from the sensor photodiode through the column and programmable gain amplifiers (PGA) and analog-to-digital converters (ADC) in each and every part of the sensor [NOISE].

2.7.1 Fixed Pattern (Spatial) Noise

FPN refers to spatial noise and is due to device mismatches in the pixels, variations in the column amplifiers and mismatches between multiple PGAs and ADCs.

Dark current FPN, due to mismatches in the pixel photodiode leakage currents, tends to dominate, especially with long exposure times. Low leakage photodiodes reduce this FPN component. Dark frame subtraction is another option to reduce the dark current FPN component but it increases the readout time of the sensor [NOISE].

The most common FPN in image sensors is associated with rows and columns due to mismatches in multiple signal paths, and un-correlated, row operations in the
image sensor. Most of this error results in offset, or dc, noise, which can be canceled using a technique called correlated double-sampling. On the other hand, gain mismatches are more difficult to remove, since they require more sample time for gain correction [NOISE].

2.7.2 Temporal Noise
Temporal noise is the time-dependent fluctuations of the signal level, unlike FPN which is fixed. Temporal noise can be found in the pixel, column amplifiers, programmable gain amplifiers and ADCs. There is also circuit-oriented temporal noise due to substrate coupling or poor power supply rejection [NOISE].

2.7.2.1 Pixel Noise
Noise sources in the pixel are the photon shot noise, reset (kT/C) noise, dark current shot noise and the MOS device noise [NOISE].

Pixel Photon Shot Noise
Photon absorption is a random process following Poisson statistics. This means that the standard deviation (or noise) of the photon noise limits the Signal-to-Noise Ratio (SNR) associated with detecting a mean of \(N\) photons. The SNR is equal to the square root of the number of photons absorbed and is given by [NOISE]:

\[
\text{SNR (photon)} = \sqrt{N}
\] (2.1)

Photon shot noise limits the SNR when the detected signals are large. The system noise floor determines the lower limit of the dynamic range of the sensor. The difference between the largest and smallest signal detected is called the dynamic range [NOISE].
Pixel Reset (kT/C) Noise

The signal integrated on a pixel is measured relative to its reset level. The thermal noise associated with this reset level is called the reset or the kT/C noise. The correlated-double-sampling technique is used to eliminate the majority of this noise [NOISE].

Pixel Dark Current Shot Noise

Pixel Shot Noise is due to the photodiode leakage current, I_{dark}, and is dependent on the exposure time τ given by:

$$\text{Noise in Volts} = \frac{q}{C_{pix}} \sqrt{I_{dark} \tau / q} \tag{2.2}$$

Where C_{pix} is the total pixel capacitance and q is the electronic charge [NOISE].

MOS Device Noise

The amplifier noise in the pixels is due to the thermal and flicker ($1/f$) noise of the MOS transistors. $1/f$ noise can be eliminated through double sampling of a single pixel. Thermal noise in the MOS devices can be reduced by limiting the bandwidth of the pixel amplifier (a source follower) using a large capacitive load [NOISE].

2.7.2.2 Column Amplifier Noise

The column circuit stores both the pixel reset and photo sample values, and amplifies the difference signal. Major noise sources that are associated with this circuit are the kT/C thermal noise and flicker noise [NOISE].

Column Amplifier kT/C Noise
The two sampling operations associated with the signal and reset levels result in a thermal noise signal given by:

$$\text{Noise} = \sqrt{\frac{2kT}{C(\text{Column})}}$$ \hspace{1cm} (2.3)

C_{column} is the column sampling capacitance; k is Boltzmann’s constant; and T is the absolute temperature in degrees Kelvin. A further 3dB increase in column kT/C noise can be done if dark reference columns are used to reduce column fixed-pattern noise [NOISE].

Column Amplifier MOS Device Noise

Flicker noise present in the column amplifier MOS devices is negligible compared to the sampling operation kT/C noise [NOISE].

2.7.2.3 Programmable Gain Amplifier Noise

Noise sources in the programmable gain amplifiers are the kT/C thermal noise related to the sampling operations and the programmable gain MOS device noise [NOISE].

Programmable Gain MOS device Noise

MOS amplifier thermal and flicker noise is much smaller than the sampling operation kT/C noise [NOISE]. Lower noise is generally achieved by using larger-area devices and operating at higher bias current levels.

Programmable Gain kT/C Noise
In the column amplifier case, two sampling operations are performed, and the associated thermal noise signal is given by [NOISE]:

\[
Noise = \sqrt{\frac{2kT}{Cpga}}
\]

(2.4)

2.7.2.4 ADC Noise

The biggest noise source in a high-performance ADC is the quantization noise. An ideal ADC’s quantization noise is given by:

\[
\text{Noise} = \frac{\text{LSB}}{\sqrt{12}} \text{ (Volts)}
\]

(2.5)

\[= 0.288 \times \text{LSB (Volts)}\]

The ADC noise level will exceed 0.288 LSB due to other noise sources like thermal, amplifier and switching noise. Random mismatches in the ADC components also contribute to fixed-pattern noise in the ADC [NOISE].

2.7.2.5 Dynamic Range

The ratio of the largest signal to the smallest simultaneous signal (noise floor) is defined as the dynamic range of a CMOS sensor [NOISE]. It is generally expressed in dB.

2.8. CMOS Image Sensor Architecture

Passive CMOS sensor pixels (one transistor per pixel) had a good fill factor but suffered from very poor signal to noise performance. Active CMOS sensors came into existence to reduce the noise in passive sensors. Most of the CMOS designs today use active pixel sensors, which have an amplifier in each pixel, a source follower typically
constructed with three transistors. A pixel with three transistors is known as the 3T pixel. Other CMOS pixel designs include more transistors (4T and 5T) for specific reasons to reduce noise and/or to achieve simultaneous shuttering. The simpler structures have better fill factor and higher density while the more complex structures have more functionality. Functionality versus density is one major tradeoff [NOISE].

2.8.1 3T Architecture

Fig 2.3 shows the 3T architecture APS. The three transistors are the reset transistor, source follower and the row select transistor. When reset is higher, the pixel is in reset mode. When reset is low, the pixel integrates at a rate dependent on the light falling on it. The source follower transistor is used to transfer the voltage from the photodiode to the column line through a row select transistor.
2.8.2 4T/5T Architecture

Fig 2.4 shows the 4T/5T architecture. The architecture is similar to 3T architecture except it has one transfer gate and a MOScap. The transfer gate is used to program the integration time in order to have a good quality image. The MOScap is used to prevent the loss of data from the pixel and to reduce kT/C noise. The use of a transfer gate avoids the use of a rolling shutter, as is commonly used in the 3T architecture. The total array acts as an analog memory, storing each pixel values in the cell.
In this project, the 4T/5T architecture is used for each pixel
3 DESIGN AND SIMULATIONS

3.1 Active Pixel Sensor

The active pixel sensor uses the principle of taking two samples from the same pixel and then subtracting it in order to reduce fixed-pattern noise and to get a better quality image. This principle is known as correlated double sampling. The circuitry which controls the reading out of a pixel’s voltage is mostly digital. Fig 3.1 shows the block diagram of an active pixel sensor design.

Fig 3.1 Block Diagram of Active Pixel Sensor

The active pixel sensor design in this project consists of a 32x32 array of pixels. The light incident on this array is stored on a MOSFET capacitor (MOScap) in the pixel and then is read out using the decoder and multiplexer. A 12-bit counter is used to generate the signals for the multiplexer and the decoder. The decoder selects one row at a time. When a row is selected, the sampled value in each row is fed to the column. There
are 32 column circuits, one for each column in the pixel array. The value stored in the column is then read out using the 32x1 multiplexer. In order to vary the integration time, a Variable Integration (VI) logic block is used. The VI logic block generates three different reset pulses with three different integration times: 256μs, 512μs, and 1024μs, respectively. These integration times are selected using a 4:1 multiplexer. The sensor works at a frequency of 2 MHz, allowing 0.5μs of time between two successive samples. The voltage generated by the light incident on the pixels is read out first, followed by the reset value.

There are three modes of operation: integration mode, sample mode, and reset mode. Integration mode is when integration of the photo-current takes place. Sample and reset modes are when the reset and sample values are read out. The table below shows the 2 MSB’s (Q10 and Q11) of the counter and the corresponding modes.

<table>
<thead>
<tr>
<th>Q11</th>
<th>Q10</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Integration</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Integration</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Sample</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Reset</td>
</tr>
</tbody>
</table>

Table 3.1 Modes of Sensor operation

The rows and columns are selected only during the sample and reset modes, so that we read only relevant data. In order to accomplish this task, the decoder and multiplexer select signals are passed through two-input AND gates where the other input is the $Q_{i/1}$ bit of the counter. This allows the sensor to select rows and columns only in sample and reset mode. (Refer to table 3.1.)
3.2 Photo Pixel

A photo pixel consists of a photodiode, a few control transistors, a MOS amplifier, and a MOScap to capture the light intensity. The photo pixel used in this project is the 4T/5T architecture. It consists of 4 transistors, a MOScap and a photodiode.

The basic premise behind the photodiode front end is to indirectly measure the relatively small photocurrent by converting it into a large voltage swing. We also require the circuit which performs this current-to-voltage conversion to occupy a small amount of area on the chip.

The photodiode senses the light falling on it and a photocurrent flows through it. The photocurrent is converted into a voltage using a load. The photodiode is modeled as a parasitic capacitance in parallel with a current source. The photodiode with a load and the equivalent circuit model is shown in figure 3.2.

![Fig 3.2 Simulation Model of Photo Diode.](image-url)
Fig 3.3 shows the 4T/5T pixel architecture used in this project. The photodiode is pulled up towards V_{dd} through an NMOS transistor load, Mrst, whose gate is connected to the reset signal. The value sampled is actually stored on the MOScap, whose gate is connected to V_{dd}. The T_X signal controls the value to be stored using an NMOS pass gate, Mtx. The voltage on the MOScap is buffered through a source follower amplifier, Msf. The pixel output value is transferred to the column line using a row signal through Msel.

When reset is high, the value at node V_{pix} is $V_{dd} - V_{thn}$, since there is a threshold drop at the reset transistor. The signal T_X stays high for the desired integration time ($256\mu s$, $512\mu s$ or $1024\mu s$) and goes low only in sample mode. The value measured on the column line at the output of the source follower is $V_{dd} - 2V_{thn}$ since there is a second
threshold drop at the source follower. When a row is selected, each pixel voltage can be read at the associated column.

The pixel operates with $V_{dd} = 3.3\text{V}$ and $V_{ss} = 0\text{V}$. The size of the MOScap is 4.05 $\mu\text{m}/1.95\mu\text{m}$ in the AMI 0.5μm process. The reset, T_x, and row transistors are 3 $\mu\text{m}/0.6\mu\text{m}$ each. The source follower has a size of 4.8 $\mu\text{m}/1.5\mu\text{m}$. For simulations, the photodiode model consists of a current of 50pA and capacitor value of 20.5fF. Fig 3.4 shows the simulation waveforms of the pixel, including resetting after 512 μs of integration time.

Fig 3.4 Simulation results of Photo Pixel
V_{out} is the sampled value. It integrates when reset is low and holds when T_X is low. The sudden glitch in the sampled value when reset goes low is due to charge injection from the NMOS pass transistor when it turns off. The sampled value again resets itself when reset and T_X signals are high.

3.3 Column Circuit

The column circuit consists of a current mirror, a PMOS capacitor, and a PMOS-input voltage follower. The current mirror draws a current of 10μA for dynamically discharging the value at the capacitor in order to store the next row’s value. Fig 3.5 shows the column circuit. The output from the pixel is given to the column line. An external resistor of 230kΩ generates a current of 11μA.

![Fig 3.5 Column Circuit.](image-url)
An external resistor of 90kΩ generates a current of 33μA to bias the voltage follower. The circuit works with $V_{dd} = 3.3\text{V}$ and $V_{ss} = 0\text{V}$. Fig 3.6 shows the schematic of the amplifier used in the voltage follower. The amplifier has an open-loop gain of 35.1 dB, or 57 V/V, and a bandwidth of 1 MHz.

Fig 3.6 Schematic of voltage follower.
Fig 3.7 shows the open loop AC response of the differential amplifier shown in Fig. 3.6. The open loop gain is 35.1 dB, which corresponds to 57 Volts/Volts. The cutoff frequency of the amplifier is 1MHz, so the gain-bandwidth (GBW) product is 57MHz. The voltage follower configuration of the differential amplifier has unity gain. Since GBW is constant for a given amplifier, the cutoff frequency of the voltage follower is 57MHz. The samples of the active pixel sensor come out at a 2MHz clock frequency. The voltage follower cutoff frequency is way beyond 2MHz; hence, it is suitable for this APS application.
Fig 3.8 shows the transient response of the voltage follower configuration. The voltage follower configuration is where the negative input of the differential amplifier is connected to the output and the input is given to the positive output. V_{in} is the input and V_{out} is the output of the voltage follower. $V_{dd} = 3V$ and $V_{ss} = 0V$. V_{in} is a xxkHz sinusoid with an amplitude of yyV. From the waveforms, we see that the output is the same as the input. Hence, the voltage follower configuration of the differential amplifier is working well.

3.4 Decoder 5 x 32
A 5 x 32 decoder is used to select each row in the array. There are 32 rows. The input to the decoder is given from the counter outputs Q5-Q9. The decoder used here
is a simple NAND gate followed by 3 inverters for driving the row in the array. Fig 3.9 shows the block diagram of decoder.

![Block Diagram of Decoder and each cell schematic.](image)

There are 32 cells in a decoder, one for each row. Each cell is independent of each other, except for the inputs. Each cell consists of a 5-input NAND gate with three inverters. The circuit works at $V_{dd} = 3V$ and $V_{ss} = 0V$. A particular combination of inputs selects only one cell in the decoder, meaning, the output of that cell is set to logic high. All of the other cells are unselected, or logic low. The combination of inputs that select a particular output is shown in Table 3.2.
Table 3.2 Truth Table for the Decoder

<table>
<thead>
<tr>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>output selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Row1
Row2
Row3
Row4
Row5
Row6
Row7
Row8
Row9
Row10
Row11
Row12
Row13
Row14
Row15
Row16
Row17
Row18
Row19
Row20
Row21
Row22
Row23
Row24
Row25
Row26
Row27
Row28
row29
row30
row31
row32
The right column in the Table 3.2 shows the row number which has been selected for a particular input combination. The schematic of the 5-input NAND gate is shown in Fig 3.10 and the truth table for NAND in Table 3.3.

![Schematic of 5-Input NAND Gate](image)

Fig 3.10 Schematic of 5-Input NAND Gate.

<table>
<thead>
<tr>
<th>e</th>
<th>d</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.3 Truth Table for NAND Gate
The simulation results of the decoder are shown in Fig 3.11. It shows the first 8 addresses at the output. The input of the decoder is a 12-bit counter. The results that, at anytime, only one of the outputs is selected, which is the row input to the array.

Fig 3.11 Simulation Results of 5 x 32 Decoder for bits D0-D7

3.5 32 x 1 Multiplexer
A 32 x 1 transmission-gate multiplexer is used to read the data out from the column circuit. The inputs to this multiplexer are the output voltages from the column circuits and the column select lines. The select lines are connected to the first five LSB’s of the counter. A multiplexer basically connects one input to the output, depending on the
particular select line combination. Fig 3.12 shows the block diagram of a 32 x 1 multiplexer.

Fig 3.12 Block Diagram of a 32 x 1 Multiplexer
3.5.1 4 x 1 Multiplexer

A 4 x 1 multiplexer is used in selecting the different integration times for different light intensities. Multiplexers in this project are designed using transmission gates. The 32 x 1 multiplexer must use transmission gates because it has to select one analog voltage value from the column lines. Fig 3.13 shows the schematic of the multiplexer.

![Fig 3.13 Schematic of 4 x 1 Multiplexer]

<table>
<thead>
<tr>
<th>S1</th>
<th>S0</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 3.4 Truth Table for 4 x 1 Multiplexer
Table 3.3 shows the truth table for the 4 x 1 multiplexer for different combinations of select lines. Simulation results for the 4 x 1 multiplexer are shown in Fig 3.14. The inputs $A = V_{dd}$, $B = V_{ss}$, $C = V_{dd}$ and $D = V_{ss}$ are given to the multiplexer. From the waveforms we note that input S_0 has twice the frequency of S_1. When $S0$ and $S1$ are logic ‘0’ the output is logic ‘1’ and when they are logic ‘1’ they are logic ‘0’. In a similar way, they function correctly for the other combinations. This shows that the 4 x 1 multiplexer is working according to the specifications.

Fig 3.14 Simulation Results of 4X1 Multiplexer.

3.6 12-bit Counter

A 12-bit ripple counter is used to select the rows and columns, and to program the variable integration time logic in the active pixel sensor project. Each bit in the counter is generated by a half adder and a D-flip flop. The D-flip flop is used to synchronize the
counter with the clock. The carry-out of one cell is connected to the carry-in input of the successive cell. The carry-in input of the first cell is a logic ‘1’. The other input for the half adder is the feedback signal from the output of the D-flip flop.

The counter operates at a maximum clock frequency of 12 MHz and the power supply for this circuit is $V_{dd} = 3V$ and $V_{ss} = 0V$. For every positive edge of the clock there is a change in the output of the D-flip flop which changes one of the inputs of the half adder and thus a carry signal is generated and is given as input to the next cell. Thus, the counter increments with each rising-edge of the clock. The basic block diagram for the counter is shown in Fig 3.16 and the individual cell is shown in Fig 3.15.

![Fig 3.15 Single Cell of Counter.](image-url)
Fig 3.16 Block Diagram of a 12-Bit Counter
Fig 3.15 shows the schematic of each cell in the counter which is responsible for producing one bit. Q is the output of one cell in the counter. Input A is the carry-in signal, whereas output CO is the carry-out signal. Input A for the first cell is connected to V_{dd} and for the other cells it is connected to the carry-out of the previous cell. Counting occurs for every positive edge of the clock. In this project, the counter operates at a clock frequency of 2 MHz.

3.6.1 Half Adder

The half adder circuit has an XOR gate and an AND gate. The XOR gate generates the sum bit and the AND gate gives the carry bit. Fig 3.17 shows the schematic of the half adder.

![Half Adder Circuit](image)

Fig 3.17 Schematic of Half Adder Circuit.
The XOR gate is implemented using transmission gates in order to save power. The AND gate is implemented using a NAND and an inverter. Table 3.4 and 3.5 shows the truth tables of the XOR and AND gates, respectively.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.5 Truth Table of XOR Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.6 Truth Table of AND Gate

Simulation results for XOR and AND gate are shown in Figs 3.21 and 3.22, respectively. The AND and the XOR are important circuits in the counter, even though they are basic elements. The AND generates the carry bit and the XOR the sum bit. The AND and XOR gates work according to the specifications.

![Simulation Results of 2 Input XOR](image)

Fig 3.18 Simulation Results of 2 Input XOR
3.6.2 The D-Flip Flop

The D-flip flop is used to synchronize the counter with the clock. At every positive clock edge the output follows the input and remains in that state till the next positive clock edge. Thus, there is a change in the output at every positive clock edge. The Clear signal is used to clear the output, that is, to set the output to logic 0 whenever the clear signal is high. Fig 3.20 shows the schematic of the D-flip flop.

Fig 3.21 shows the simulation results of the D-flip flop. When clear is logic ‘1’ the output of the circuit is logic ‘0’. The circuit produces an output only when clear is logic ‘0’. The output follows the input at every positive clock edge and holds the value until the next clock event.
Fig 3.20 Schematic of the D-Flip Flop.

Fig 3.21 Simulation Results of D-Flip
Fig 3.22 shows the simulation results of first four LSB’s of the counter. Q0 is at half the clock frequency, Q1 is at one-fourth the clock frequency Q2 is at one-eighth and Q3 is at one-sixteenth the clock frequency. All the other bits work in same way, decreasing in frequency by a factor of two from the previous bit.

3.7 The Variable Integration (VI) Logic

The VI Logic is used to select the integration time. The three different times used are 256μs, 512μs, and 1024μs. In order to generate these integration times, the last 3 bits of the counter Q9, Q10, Q11 are used to generate \(R_{256} \) and the last 2 bits, that is, Q10 and Q11, are used to generate \(R_{512} \) and \(R_{1024} \). The truth table for the reset and \(T_X \) signals are given in Table 3.6
Table 3.7 Truth Table of Reset and T_x
Signals for different Integration Times.

<table>
<thead>
<tr>
<th>Q11</th>
<th>Q10</th>
<th>Q9</th>
<th>R256</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$T_x = \overline{Q}_{11} + Q_{10}$

$R_{256} = Q_{11} + \overline{Q}_{10} + \overline{Q}_{9}$

$R_{512} = Q_{11} + \overline{Q}_{10}$

$R_{1024} = Q_{11}$

Fig 3.23 Boolean Expressions

Fig 3.24 Simulation Results of VI Logic Block
Fig 3.23 shows the Boolean equations for the T_X and different integration time’s logic. Fig 3.24 shows the simulation results for the equations. The reset signals at 512μs and 1024μs integration times operate correctly, but the reset at a 256μs integration time does not work. The simulation results show that the R_{256} value becomes logic ‘0’ after T_x becomes logic ‘1’. This circuit should be corrected in future work.
4 Test Setup and Procedure

This chapter describes the test procedure for the CMOS active-pixel sensor.

4.1 Chip Description:

The chip contains an image sensor used for optics applications along with individual test circuits. It is a 40pin DIP prototype with 30 input/output pads. The chip was submitted on March 27th, 2006.

4.2 Chip Description

<table>
<thead>
<tr>
<th>Analog Circuits</th>
<th>Digital Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Pixel Sensor with a 32 x 32 pixel array.</td>
<td>12 bit Counter.</td>
</tr>
<tr>
<td>32 x 1 Analog Multiplexer.</td>
<td>Variable Integration logic.</td>
</tr>
<tr>
<td>32 x 1 Column circuit.</td>
<td>Decoder/Multiplexer logic.</td>
</tr>
<tr>
<td></td>
<td>5 x 32 Decoder.</td>
</tr>
<tr>
<td></td>
<td>4 x 1 Multiplexer.</td>
</tr>
</tbody>
</table>

The APS consist of 3 analog parts and 5 digital parts. The digital parts are necessary for reading out the data from the pixel. The pixel and the voltage follower in the column circuit forms the core analog parts. The area of the digital circuits in layout is less than the analog circuitry since the pixel array occupies the major area in the layout.
Fig. 4.1 Pin configuration of the Active Pixel Sensor chip with test structures.
<table>
<thead>
<tr>
<th>Pin Num</th>
<th>Pin Name</th>
<th>Pad Type</th>
<th>Pin Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ib₂</td>
<td>Protect</td>
<td>Input</td>
<td>Biasing current for the voltage follower 2 KΩ to V_{SS}.</td>
</tr>
<tr>
<td>2</td>
<td>Ib₁</td>
<td>Protect</td>
<td>Input</td>
<td>Biasing current for the column Circuit 7.5 KΩ to V_{DD}.</td>
</tr>
<tr>
<td>4</td>
<td>V_{out} (TP)</td>
<td>Protect</td>
<td>Output</td>
<td>Output voltage of single pixel.</td>
</tr>
<tr>
<td>5</td>
<td>V_{ss} (TP)</td>
<td>Protect</td>
<td>Input</td>
<td>$0V$ for the Test Pixel.</td>
</tr>
<tr>
<td>6</td>
<td>V_{dd} (TP)</td>
<td>Protect</td>
<td>Input</td>
<td>3.3V for test squaring circuit.</td>
</tr>
<tr>
<td>8</td>
<td>V_{out} (AB)</td>
<td>Analog Buffer</td>
<td>Output</td>
<td>Output voltage of analog buffer test structure.</td>
</tr>
<tr>
<td>9</td>
<td>V_{ss} (TC)</td>
<td>Protect</td>
<td>Input</td>
<td>$0V$ for the total chip (analog parts).</td>
</tr>
<tr>
<td>10</td>
<td>V_{out} (TC)</td>
<td>Analog Buffer</td>
<td>Output</td>
<td>Analog Output of the total chip.</td>
</tr>
<tr>
<td>11</td>
<td>V_{in} (AB)</td>
<td>Protect</td>
<td>Input</td>
<td>Input voltage of analog buffer test structure.</td>
</tr>
<tr>
<td>12</td>
<td>V_{dd} (TC)</td>
<td>Protect</td>
<td>Input</td>
<td>3.3V for the total chip (analog parts).</td>
</tr>
<tr>
<td>16</td>
<td>Padvdd</td>
<td>Vdd</td>
<td>Input</td>
<td>3.3V for the pad frame.</td>
</tr>
<tr>
<td>17</td>
<td>S0</td>
<td>protect</td>
<td>Input</td>
<td>LSB of the multiplexer for Integration time logic.</td>
</tr>
<tr>
<td>18</td>
<td>S1</td>
<td>Protect</td>
<td>Input</td>
<td>MSB of the multiplexer for Integration time logic.</td>
</tr>
<tr>
<td>19</td>
<td>Q11</td>
<td>Protect</td>
<td>Input</td>
<td>MSB of the up-counter.</td>
</tr>
<tr>
<td>20</td>
<td>Clk</td>
<td>Protect</td>
<td>Input</td>
<td>2M Hz clock input to the chip.</td>
</tr>
<tr>
<td>21</td>
<td>Clear</td>
<td>Protect</td>
<td>Input</td>
<td>Signal for clearing all digital buffers.</td>
</tr>
<tr>
<td>23</td>
<td>Dvdd</td>
<td>Protect</td>
<td>Input</td>
<td>3.3V to the digital circuits</td>
</tr>
<tr>
<td>24</td>
<td>Dvss</td>
<td>Protect</td>
<td>Input</td>
<td>0V to the digital circuits.</td>
</tr>
<tr>
<td>Pin Num</td>
<td>Pin Name</td>
<td>Pad Type</td>
<td>Pin Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>25</td>
<td>pad_vss</td>
<td>vss</td>
<td>Input</td>
<td>0V to the pas frame.</td>
</tr>
<tr>
<td>30</td>
<td>AV<sub>dd</sub> (TS)</td>
<td>Protect</td>
<td>Input</td>
<td>3.3V to the column test circuit.</td>
</tr>
<tr>
<td>31</td>
<td>AV<sub>ss</sub> (TS)</td>
<td>Protect</td>
<td>Input</td>
<td>0V to the column test circuit.</td>
</tr>
<tr>
<td>32</td>
<td>V<sub>in</sub> (TS)</td>
<td>Protect</td>
<td>Input</td>
<td>Input voltage for the column test circuit.</td>
</tr>
<tr>
<td>33</td>
<td>V<sub>out</sub> (TS)</td>
<td>Protect</td>
<td>Output</td>
<td>Output voltage of the column test circuit.</td>
</tr>
<tr>
<td>34</td>
<td>Ib<sub>1</sub> (TS)</td>
<td>Protect</td>
<td>Input</td>
<td>Biasing current for the column test circuit 230K Ω to vdd.</td>
</tr>
<tr>
<td>35</td>
<td>Ib<sub>2</sub></td>
<td>Protect</td>
<td>Input</td>
<td>Biasing current for the voltage follower in column test circuit 90K Ω to vss.</td>
</tr>
<tr>
<td>36</td>
<td>V<sub>in</sub> (DB)</td>
<td>Protect</td>
<td>Input</td>
<td>Input voltage to the digital buffer test structure.</td>
</tr>
<tr>
<td>37</td>
<td>V<sub>out</sub> (DB)</td>
<td>Digital Buffer</td>
<td>Output</td>
<td>Output voltage of a digital buffer test structure.</td>
</tr>
<tr>
<td>38</td>
<td>V<sub>out</sub> (Rst)</td>
<td>Digital Buffer</td>
<td>Output</td>
<td>Output voltage of the reset signal.</td>
</tr>
<tr>
<td>39</td>
<td>V<sub>out</sub> (Tx)</td>
<td>Digital Buffer</td>
<td>Output</td>
<td>Output voltage of the Tx signal.</td>
</tr>
<tr>
<td>40</td>
<td>V<sub>out</sub> (row)</td>
<td>Digital Buffer</td>
<td>Output</td>
<td>Output voltage of the 16<sup>th</sup> row of the 32x32 array of pixels.</td>
</tr>
</tbody>
</table>

Table 4.1 Pin Table
4.3 Test Procedure

The chip project name is APS_nitin. It was tested using a 9-Volt battery (V_{DBBAT}), a 3-Volt DC power supply (V_D) and ground, ($V_S = V_{SSBAT} = 0V$). The test time of the chip was about 25 days including the setup time of the equipment.

4.3.1 Test Procedure of Digital Circuits:

1. There are three digital output signals: reset, row16, and Tx. And there are 3 inputs.
2. Fig 4.7 shows the basic block diagram of the digital circuits. The inputs V_{dd}, V_{ss} and clk are given to pins 23, 24 and 20, respectively. The outputs Rst, Tx and row16 are given to the oscilloscope at pins 38, 39 and 40, respectively.
3. Connect pin 20 to the 2 MHz clock signal from the function generator and V_{dd}, V_{ss} to 3.3V and 0V, respectively.
4. Observe the waveforms using the oscilloscope at pins 38, 39 and 40 for the digital output signals.

![Fig 4.2 Test Setup and Pin Configuration of Digital Circuits]
4.3.2 Test procedure of a single pixel:

1. The test pixel consists of 2 input pins and 1 output pin. The output is the voltage of the photo diode when light falls on it.

2. Fig. 4.3 shows the block diagram of the test pixel. The 2 inputs are V_{dd} and V_{ss} at pins 6 and 5, respectively, and the output is at pin 4.

3. The reset and the Tx signal for the pixel are the same as those for the whole chip. The row signal is externally set to V_{dd}, so that the pixel’s row input is always logic ‘1’.

4. The voltage at the output of the amplifier is measured using a DMM.

Fig. 4.3 Test Setup and Pin Configuration of a single pixel
4.3.3 Test Procedure of the column circuit:

1. The column test structure consists of 3 input pins and 1 output pin. The output is a copy of the input voltage with a simulated gain of 50/51 V/V, which is almost 1 V/V.

2. Fig 4.5 shows the block diagram of column test structure. Inputs V_{dd}, V_{ss}, I_b and V_{in} are at pins 30, 31, 35 and 32, respectively. The output is measured at pin 33.

3. Connect pin 35 to the 90 kΩ resistors and the other end of the resistor to V_{ss} to generate a biasing current for the voltage follower of 33μ A.

4. Connect pin 32 to the signal generator and apply a sine wave of 100 kHz frequency with 3.3Vpp amplitude with an offset of 1.65V.

5. Measure the output voltage at pin 33 by connecting to the scope.

Fig 4.4 Test Setup and Pin configuration of a Test Column Circuit
4.4 Data Acquisition System Setup:
The output of the APS is a time-varying voltage (analog signal). In order to regenerate an image from this signal a data acquisition system is necessary. The data acquisition system consists of an A/D converter and a DE2 board. The A/D is mounted and soldered on a prototype board along with a female header. The female header is plugged into the DE2 board where the digital data from the A/D converter is stored and later retrieved from the SRAM (one of the components of DE2 board) by the user. The DE2 board consists of an FPGA, which is coded in VHDL, to store the data from the A/D converter. The data which has been retrieved from the DE2 board is analyzed by MATLAB for regeneration of the image falling on the sensor.

4.4.1 A/D Setup
1. A 10-bit analog-to-digital converter which runs at a maximum speed of 30 Mega-samples per second (MSPS) and has a power supply range from 3V to 5.5V is used for the required data conversion. The part number is THS1030; it’s a Texas Instrument’s product.
2. The digital data from the A/D converter is input to a DE2 board which has an ALTERA Cyclone 2 FPGA.
3. The A/D used for data acquisition operated in 3 modes.
 a. External V_{ref} with single-ended input (MODE = V_{ss}).
 b. Internal V_{ref} with differential input (MODE = $V_{dd}/2$).
 c. Internal V_{ref} with single-ended input (MODE = V_{dd}).
4. For this project mode c, that is, internal V_{ref} with single-ended input, is used. In the internal V_{ref} mode, the A/D converter generates the reference voltage internally.

5. Fig 4.11 shows the setup and pin structure of the A/D converter.

6. Connect pin 28, 19, 1, 2 and 14 to AV_{dd}, AV_{ss}, DV_{dd} and DV_{ss}, respectively. Connect pin 23 (MODE) to AV_{dd}. Connect pins 17 and 16 to DV_{ss} and pin 20 to DV_{dd}.

7. The input to the A/D converter is given from the APS using BNC cables.

Fig 4.5 Setup and Pin Configuration of A/D Converter [THS10].
4.4.2 Prototype Board Setup

A 4 x 2.5 inch prototype board is used in the project to solder the A/D converter and a 40 pin female header. The DE2 board has 40 pin male headers as one of the input output source to the board. The 10-bit output data is soldered to the specified pins of the header which will be later programmed on FPGA to store the exact format of the data in SRAM (MSB to LSB). Along with A/D converter and the header the prototype board even has 4 BNC pins. These 4 BNC pins are used to get V_{dd}, MSB of the counter in APS, output of the sensor (Analog input to the A/D) and the clock signals. Same clock input is given to the A/D converter, DE2 board and the APS.

4.4.3 DE2 Setup:

1. Inputs to the DE2 board are Q_{11}, which is the MSB of the counter, clock, and the digital output lines from A/D converter.

2. The digital data from the A/D converter is stored in SRAM using VHDL code which is burned on the cyclone 2 FPGA in the DE2 board. Data sampling begins on the rising edge of the counter MSB, Q_{11}. The samples are taken on the rising edge of the clock.

3. These values are stored in SRAM sequentially by incrementing the address. The SRAM has an 18-bit address and 16-bit data in each address. Since the input is only 10-bit data, the top 6 bits are padded with 0’s.

4. A *.sof file is generated when the code compiles successfully. This *.sof file is used to burn onto the FPGA using the Quartus 2 software.

5. Quartus 2 software has a built-in DE2_control_pannel.sof file and a DE2_control_pannel.exe file. Burning the DE2_control_pannel.sof file on the
FPGA and running the DE2_control_pannel.exe file on the host computer helps the user to establish a direct access with the memory units on the DE2 board (DMA) through a USB cable. This helps us to read the contents of the SRAM directly without writing any VHDL code for reading.

7. The RAM contents are loaded into the host computer using the load file button on the interface (DE2_control_pannel.exe) and it should be stored in .hex format.

8. The *.hex file stored can be opened using Notepad and the contents are viewed as hexadecimal numbers line by line.

4.4.4 Test Procedure for VHDL Code:
1. The VHDL code basic function is to store 2 values (photo and the reset value) for each of the pixels. Since there are 1024 pixels, there are 2048 values in total.

2. These 2048 values are stored in an SRAM chip through a FPGA, which is coded in VHDL.

3. The VHDL code generates a process in which the address locations are increased sequentially for every positive edge of the clock. The clock is the same for all the circuits (APS, A/D converter and DE2 board).

4. The VHDL code is burned into the FPGA through a *.sof object file. Compiling the VHDL code generates this object file. After the object file is generated, pins are assigned for the input data using the DE2 data sheet.

5. The circuits should be powered on, in the following order: first the DE2 board is powered on and the code is burnt on the FPGA. Then, the A/D converter is
switched on, followed by the APS, and finally the clock is given to all the circuits, so as to avoid any loss of data.

6. The FPGA stores the data in SRAM as it is programmed.

7. Another built in *.sof file called DE2_control_pannel.sof is burnt on the FPGA for retrieval of data from the SRAM.

8. The data is accessed using a software interface which is done by executing DE2_control_pannel.exe. Using this interface, the data in SRAM is loaded into the host computer with an extension *.HEX. This *.HEX file is viewed using the Notepad application.

4.4.5 Test Procedure for MATLAB Code:

1. The *.HEX file stored on the host computer is opened using the MATLAB tool.

2. The MATLAB code first computes the correlated double sampling by taking the difference between the reset and photo values of each pixel. Since the first 1024 values are photo values and the next 1024 are reset values, the difference between the first and 1025th values, the second and 1026th value, and so on, are calculated.

3. Then the code normalizes the highest pixel value to number 255 (gray scale), so that all the pixel values range between 0-255.

4. These values are arranged in a 32 x 32 matrix and plotted.
4.5 Test Procedure for the Active Pixel Sensor

- The active pixel image sensor has 7 inputs and 2 outputs. The outputs are the samples through V_{out} at a sample rate of 2 MHz frequency. These samples need to be digitized and processed in order to regenerate the image incident on the sensor.

- Correlated double sampling is the difference between the reset and the photo samples. It is done in order to reduce noise. The types of noise that are reduced due to correlated double sampling are fixed pattern noise (mismatch in the source follower in each pixel) and flicker noise (low frequency noise).

- Fig 4.10 shows the basic block diagram of the APS which has to be tested. The inputs of the chip are DV_{dd} DV_{ss} AV_{dd} AV_{ss} Ib_1 Ib_2 and clk. The outputs are V_{out} and Q_{11}.

- Connect pin 28, 19, 1, 2 and 14 to AV_{dd}, AV_{ss}, DV_{dd} and DV_{ss}, respectively.

- Connect pin 20 to a signal generator which generates a 2 MHz clock.

- Connect pins 23 and 30 to 3.3 V and pins 24 and 31 to 0V.

- Connect pin 1 to a 2 kΩ resistor and the other end of the resistor to AV_{ss} to generate a bias current of $33\mu A \times 32$ for the 32 voltage followers in column circuits.

- Connect pin 2 to a 7 kΩ resistor and the other end of the resistor to AV_{dd} to generate a bias current of $11\mu A \times 32$ for the 32 column circuits.

- Connect the output V_{out} at pin 10 to the input in of the A/D converter and pin 19, Q_{11}, to the DE2 Board using the BNC cables on the prototype board.
- Each part of the data acquisition system must be turned on in order to prevent the loss of the data. First turn on the DE2 board and then burn the *.sof file on it, then turn on A/D converter, followed by the APS, and finally connect clock to all the circuits.

- After some time (after the data has been collected on the SRAM) turn off the APS and D/A converter and then burn the DE2_control_pannel.sof file onto the FPGA, followed by running the DE2_control_pannel.exe file to read the data from SRAM.

- The DE2_control_pannel.exe software loads the contents of SRAM in *.HEX format.

- The *.HEX file is analyzed using the MATLAB code for image regeneration.

![Fig 4.6 Test Setup and Pin Configuration of Active Pixel Sensor.](image-url)
5 Test Results and Conclusions

This chapter contains the test results of the test circuits and the APS based on the test procedures discussed in chapter 4. Most of the signals are measured using an oscilloscope and a snapshot of these results is presented in the report. For the active pixel sensor, a snapshot of the image captured is presented.

5.1 Test Results of Test Photo Pixel

The single photo pixel has T_x and reset signals that are generated internally by the clock input. These signals are the same as the signals for the APS array. The test setup and procedure for the single pixel is given in sections 4.4.1 and 4.4.2.

Fig 5.1 shows the output waveform of the single pixel on the oscilloscope and fig 5.2 shows the MATLAB plot of the single pixel using a32 x 32 array used for testing the entire array. The plot is done order to verify the correctness of the code.
5.2 Test Results for the Column Circuit.

Fig 5.3 shows the results for the column circuit (voltage follower).
The output is lightly clamped due to the PMOS differential input. Only one bias current (the bias current to the amplifier) is given to the circuit since we are testing only the voltage follower. The input voltage is a sinusoidal wave with V_{pp} of 3.3V and input frequency is 1 KHz. The result is seen in the oscilloscope.

5.3 Test Results of Digital Circuits

Fig 5.4, 5.5 and 5.6 show the test results of the reset, Tx and row16 signals respectively.

Since the digital signals control the APS, we must see correct functioning of these signals. As discussed in section 4.3.1, a clock signal of 2MHz is given as input and the output is measured using an oscilloscope. This waveform shows the working of the reset, Tx and the row signals.

Fig 5.4 Test Results of the reset Signal at 1024μs

Since the digital signals control the APS, we must see correct functioning of these signals. As discussed in section 4.3.1, a clock signal of 2MHz is given as input and the output is measured using an oscilloscope. This waveform shows the working of the reset, Tx and the row signals.
Fig 5.5 Test Results of the Tx Signal

Fig 5.6 Test Results of row\textsubscript{16} Signal.
5.4 Test Results of Active Pixel Sensor

1. The setup for testing the APS is according to section 4.4.

2. In order to test real-time capture of an image, a laser beam of different sizes is made incident using the optical laboratory at NMSU.

3. The optical equipment is already setup in the laboratory for various applications. The APS is mounted in a box and the box is held on a stand in order to focus the laser beam.

4. The lens is adjusted in such a way that the laser beam is focused on the center of the array in order to capture the laser spot.

5. A laser beam with different sizes and at different positions is focused on the APS and the DE2 captures this image data and plots the image using MATLAB.

6. Screenshots of these images are taken and presented in the following pages.

7. Fig 5.7 through 5.11 shows the list of test results of APS plotted in MATLAB.
Fig 5.8 MATLAB Test Result of APS picture 2

Fig 5.9 MATLAB Test Result of APS picture 3
The dark line which appears on the 31st columns shows that there is a column fail. The column fail is not due circuit, its due to the retrieval of the digital data from the SRAM in the DE2 Board. The white spots in image indicate that the pixels have reached to saturation. In future more constant light sourced should be used to have a uniform image. A concave lens should be used to focus the image on the sensor in order to get more accurately distinguishable image.

Fig 5.10 MATLAB Test Result of APS picture 4
5.5 Conclusions and Future Work

A 32 x 32 Active Pixel Sensor has been successfully designed, simulated, laid out and sent for fabrication. The fabricated chip has been tested successfully by a low-cost high-speed Data Acquisition System setup.

- The size of the pixel used in the array is $21\mu m \times 21\mu m$. In the future, the pixel size should be reduced, so that integration times are longer and/or the pixel can operate at higher light intensities.

- The A/D converter used in the test setup is very noisy. Careful setup, e.g., soldering and grounding, has to be done in order to make it work according to specification.

- The retrieval of data from the SRAM includes some garbage data from the last 5 pixel values (only the reset values). The reason for this problem is that the A/D converter architecture is a pipeline with a latency of 5 clock cycles. This problem has to be fixed.

- The 29th row of the sensor seems to be not working; this problem seems to be a layout issue and should be taken into consideration before the next design.

- The Data Acquisition System played a major role in testing the APS.

- The R_{256} logic did not work in testing since there was mistake in the logic. This error must be corrected in the future work.

- There should be more precise MATLAB code for the regeneration of the image.
In the future, images other than laser beams need to be captures with the image sensor. This could be done by mounting a wide-angle lense in front of the chip, so as to capture scenes from the office and/or laboratory.
REFERENCES

Appendix A:

VHDL Code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

ENTITY Image_Sensor IS
 PORT
 (
 ub, we, ce, lb: out std_logic;
 msb, clk: in std_logic;
 f: inout STD_LOGIC_vector (15 downto 0);
 a: inout std_logic_vector (17 downto 0);
 k: in std_logic_vector (9 downto 0)
);
END Image_Sensor;

ARCHITECTURE test_arch OF Image_Sensor IS

BEGIN

process(clk)
 variable count: integer := 0;
begin
 ce<='0';
 lb<='0';
 ub<='0';
 we<='0';
 f<= "000000" & k(9) & k(8) & k(7) & k(6) & k(5) & k(4) & k(3) & k(2) & k(1) & k(0);
 a<="00000000000000000000000000000000"
 if (msb = '1') then
 if (clk'event and clk = '1') then
 f<= "000000" & k(9) & k(8) & k(7) & k(6) & k(5) & k(4) & k(3) & k(2) & k(1) & k(0);
 a<=a+"000000000000000000000001"
 count:=count+1;
 else
 f<=f;
 a<=a;
 end if;
 end if;
end process(clk);

END Image_Sensor;
end process;
END test_arch;
Appendix B:

MATLAB Code:

```matlab
clc;
clear all;
 fid=fopen('Image.hex','r');
 A=fgetl(fid);
 tempd=[];
 tempb=[];
 while(A~=-1)
    D=hex2dec(A);
    B=dec2bin(D,16);
    A=fgetl(fid);
    tempb=[tempb;B];
    tempd=[tempd;D];
 end
 fclose(fid);
 tempb;
 tempd;

 x=tempd(1:1024);
 k=1;
 for ii=1:32
    for jj=1:32
       samp1(ii,jj)=x(k,1);
       k=k+1;
    end
 end
 samp1

 y=tempd(1025:2048);
 k=1;
 for ii=1:32
    for jj=1:32
       reset(ii,jj)=y(k,1);
       k=k+1;
    end
 end
 reset
 pic = reset - samp1;
 colormap(gray);
 imagesc(pic);
```