
PERCEPTUAL AUDIO CODING

THAT SCALES TO LOW BITRATES

BY

SRIVATSAN A KANDADAI, B.E., M.S.

A dissertation submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

Major Subject: Electrical Engineering

New Mexico State University

Las Cruces New Mexico

May 2007

“Scalable Audio Coding that Scales to Low Bitrates,” a dissertation prepared by

Srivatsan A. Kandadai in partial fulfillment of the requirements for the degree,

Doctor of Philosophy, has been approved and accepted by the following:

Linda Lacey
Dean of the Graduate School

Charles D. Creusere
Chair of the Examining Committee

Date

Committee in charge:

Dr. Charles D. Creusere, Chair

Dr. Phillip De Leon

Dr. Deva K. Borah

Dr. Joseph Lakey

ii

DEDICATION

I dedicate this work to my wife Ashwini for her understanding and my sister

Madhu, I wish I could be as focused and meticulous as you guys.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Charles D. Creusere, for his encouragement,

guidance and knowledge. Also, I wish to thank professors Phillip DeLeon and

Deva Borah, who have taught me all my basics.

My thanks to all the NMSU students who helped in the subjective evaluations.

Kumar Kallakuri and Rahul Vanam, their work on the objective metrics was a

great help in this work. Vimal Thilak, for the long chats in the hallway. Finally,

my family for supporting me through everything.

iv

VITA

February 22, 1979 Born at Srirangam, Tamil Nadu, India

1996-2000 B.E., Bharathidasan University, Trichy, India

2001-2002 M.S., New Mexico State University
Las Cruces, New Mexico

2003-2006 Ph.D., New Mexico State University
Las Cruces, New Mexico

PROFESSIONAL AND HONORARY SOCIETIES

Institute of Electrical and Electronic Engineers (IEEE)

PUBLICATIONS [or Papers Presented]

1. Srivatsan Kandadai and Charles D. Creusere,“Scalable Audio Compression
at Low Bitrates,”Submitted to IEEE Transations on Audio, Speech and
Signal Processing

2. Srivatsan Kandadai and Charles D. Creusere,“Reverse Engineering and Repar-
titioning of Vector Quantizers Using Training Set Synthesis,” Submitted to
IEEE Transactions on Signal Processing

3. Srivatsan Kandadai and Charles D. Creusere,“Perceptually -Weighted Audio
Coding that Scales to Extremely Low Bitrates,” Proceedings of the Data
Compression Conference DCC- 2006, Snowbird, UT, Mar. 2006, pp. 382-
391

4. Srivatsan Kandadai and Charles D. Creusere, “Reverse Engineering Vector
Quantizers for Repartitioned Vector Spaces,” 39th Asilomar Conference on
Signals Systems and Computers, Asilomar, CA, Nov. 2005

5. Srivatsan Kandadai,“Directional Multiresolutional Image Analysis,” Math-
ematical Modeling and Analysis, T-7 LANL Summer Projects, Aug. 2004

v

6. Srivatsan Kandadai and Charles D. Creusere,“Reverse Engineering Vector
Quantizers by Training Set Synthesis,” 12th European Signal Processing
Conference, EUSIPCO 2004, Vienna

7. Srivatsan Kandadai and Charles D. Creusere,“An Experimental Study of
Object Detection in the Wavelet Domain,” 37th Asilomar Conference on
Signals, Systems and Computers, November 2003, Pacific Grove, CA

8. Srivatsan Kandadai,“Object Detection and Localization in The Wavelet
Domain,” 38th International Telemetering Conference, October 2002, San
Diego, CA

FIELD OF STUDY

Major Field: Electrical Engineering

Signal Processing

vi

ABSTRACT

SCALABLE AUDIO CODING THAT SCALES TO LOW BITRATES

BY

SRIVATSAN A. KANDADAI, B.S., M.S.

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, 2007

Dr. Charles D. Creusere, Chair

A perceptually scalable audio coder generates a bit-stream that contains layers

of audio fidelity and is encoded in such a way that adding one of these layers

enhances the reconstructed audio by an amount that is just noticeable by the

listener. Such algorithms have applications like music on demand at variable levels

of fidelity for 3G and 4G cellular radio since these standards support operation at

different bit rates. While the MPEG-4 (Motion Picture Experts Group) natural

audio coder can create scalable bit streams, its perceptual quality at low bit

rates is poor. On the other hand, the nonscaleable transform domain weighted

interleaved vector quantization (Twin VQ) performs well at low bit rates. As part

vii

of this research, we present a technique to modify the Twin VQ algorithm such

that it generates a perceptually scalable bit-stream with many fine-grained layers

of audio fidelity. Using Twin VQ as our base ensures good perceptual quality at

low bit rates (8 16k bits/second) unlike the bit slice arithmetic coding (BSAC)

used in MPEG-4.

In this thesis, we first present the Twin VQ algorithm along with our technique

of reverse engineering it. From the reverse engineered Twin VQ information, we

build a scalable audio coder that performs as well as Twin VQ at low bitrates in

human subjective testing. The residual signals generated by the successive quan-

tization strategy developed here are shown to have statistical properties similar to

independent Laplacian random variables, so we can therefore apply a lattice VQ

that takes advantage of the spherically invariant random vectors (SIRV) generated

by such random variables. In particular, the lattice VQ allows us more control

over the layering of the bitstream at higher rates.

We also note that the layers of audio fidelity in the compressed representation

must be stored and transmitted in a perceptually optimal fashion. To accom-

plish this, we make use of an objective metric that takes advantage of subjective

test results and psychoacoustic principles to quantify audio quality. This objec-

tive metric is used to optimize the ordering of audio fidelity layers to provide a

perceptually seamless transition from lower to higher bit rates.

viii

CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xvi

1 INTRODUCTION . 1

2 HUMAN AUDIO PERCEPTION 8

2.1 Absolute Threshold of Hearing . 9

2.2 Critical Bands . 11

2.3 Simultaneous masking . 16

2.3.1 Noise-Masking-Tone (NMT) 18

2.3.2 Tone-Masking-Noise (TMN) 20

2.3.3 Noise-Masking-Noise (NMN) 22

2.3.4 Asymmetry of Masking . 22

2.3.5 The Spread of Masking . 23

2.4 Nonsimultaneous Masking . 24

2.5 Perceptual Entropy . 27

2.6 Advanced Audio Coder (AAC) . 31

2.7 Bit-slice Scalable Arithmetic Coding 33

3 TRANSFORM DOMAIN WEIGHTED INTERLEAVED VECTOR

QUANTIZATION . 35

ix

3.1 Weighted Vector Quantization . 37

3.2 Interleaving . 42

3.3 Two-Channel Conjugate VQ (TC-VQ) 44

3.3.1 Design of Conjugate Codebooks 46

3.3.2 Fast Encoding for Conjugate VQ 48

4 REVERSE ENGINEERING THE TWIN-VQ 53

4.1 Training Set Synthesis . 58

4.2 Theoretical Analysis . 64

4.3 Smoothed Training Set Synthesis 72

4.4 Reverse Engineering TWIN-VQ 73

4.5 Experimental Verification . 75

4.5.1 Operational Rate Distortion Curves 75

4.5.2 Transformed Space Vector Quantization 78

4.5.3 Partitioned Space Vector Quantization 83

4.5.4 Performance of training set synthesis within the TWIN-VQ

framework . 85

5 SCALABLE TWIN-VQ CODER 89

5.1 Modified Discrete Cosine Transform 89

5.2 Temporal Noise Shaping . 93

5.3 Scalable TWIN-VQ . 94

5.4 Lattice Quantization of the Residuals 98

x

6 PERCEPTUAL EMBEDDED CODING 102

6.1 Objective Metrics . 102

6.2 Energy Equalization Approach (EEA) 104

6.3 Generalized Objective Metric (GOM) 105

6.4 Bit Stream Optimization . 108

7 EXPERIMENTS AND RESULTS 111

8 CONCLUSIONS AND FUTURE WORK 118

8.1 Conclusions . 118

8.2 Future Work . 119

APPENDIX. 121

REFERENCES . 170

xi

LIST OF TABLES

1 Comparison performance (in MSE) between VQs designed using

the original training set and the synthesized training set for linearly

transformed data. 82

2 Comparison of performance (in MSE) between VQs designed us-

ing the original training set and the synthesized training sets for

subspace vectors. 84

3 Sequences used for the TWIN-VQ experiment. 86

4 Comparison of performance (in MSE) between TWIN-VQ systems

designed using random audio data and synthesized training set from

the MPEG-4 standard. 87

5 The size of the subband vectors per critical band and corresponding

frequency range in Hz, for sampling frequency of 44.1kHz. 95

6 Sequences used in subjective tests. 114

7 Mean scores of Scalable TWIN-VQ and fixed rate TWIN-VQ at

8kb/s. 116

8 Mean scores of Scalable TWIN-VQ, AAC-BSAC and fixed rate

TWIN-VQ at 16kb/s. 116

xii

9 Mean scores of Scalable TWIN-VQ, AAC-BSAC and fixed rate

TWIN-VQ at 16kb/s. 116

10 Mean scores for modified TWIN-VQ, AAC and AAC-BSAC at 32

kb/s. 117

11 Mean scores for modified TWIN-VQ, AAC and AAC-BSAC at 64

kb/s. 117

xiii

LIST OF FIGURES

1 The absolute threshold of hearing in dB SPL, across the audio spec-

trum. It quantifies the SPL required at each frequency such that

an average listener will detect a pure tone stimulus in a noiseless

environment. 10

2 Critical bandwidth BWc(f) as a function of center frequency . . . 16

3 ERB(f) as a function of center frequency. 17

4 Noise-masking-tone – at the threshold of detection, a 410 Hz pure

tone presented at 76 dB SPL masked by a narrow-band noise signal

(1 Bark bandwidth) with overall intensity of 80 dB. 19

5 Tone-masking-noise – at the threshold of detection, a 1 kHz pure

tone at 80-dB SPL masks a narrow band noise signal of overall

intensity 56 dB. 21

6 Schematic representation of simultaneous masking. 25

7 Nonsimultaneous maksing properties of the human ear. Backward

(pre) masking occurs prior to masker onset and lasts only a few

milliseconds whereas post masking may persist for more than 100

ms after removal of masker. 26

8 MPEG-4 Advanced audio coder (AAC). 30

xiv

9 TWIN-VQ block diagram (a) Encoder (b) Decoder. 35

10 Vector quantization scheme for LPC residue. 38

11 Interleaving a 12 dimensional vector into two 6 dimensional vectors 44

12 Conjugate codebook design algorithm. 47

13 Hit zone masking method. 50

14 Block diagrams of a general VQ based compression systems. (a)

system that quantizes a transformed signal using VQ. (b) a system

that quantizes subspaces of the original signal separately. 56

15 An irregular convex polytope S enclosed in the region of support

for a uniform pdf over the region U. 62

16 Plot of linear monotonically decreasing function. The parameter e

controls the slope of the pdf. 68

17 Plot of variance of the truncated exponential with respect to the

rate parameter b. The broken line is the variance of a uniform pdf

over the same interval. 69

18 Plot of the mean square error between a truncated Gaussian and a

uniform pdf over a fixed σ2. 71

19 MDCT frame training set synthesis. 74

20 Plot of Rate (VQ codebook size) vs. the Distortion in Mean Squared

Error for a symmetric Gaussian pdf assuming prior knowledge of

the probabilities of VQ codebook vectors. 77

xv

21 Plot of the rate (VQ codebook size) versus the ratio of distortion in

mean squared error for a symmetric Gaussian pdf assuming prior

knowledge of probabilities of VQ codebook vectors. 79

22 Plot of the rate (VQ codebook size) versus the ratio of distortion in

mean squared error for a 2 dimensional Gaussian mixture assuming

prior knowledge of probabilities of VQ codebook vectors. Both

smoothed and unsmoothed cases are illustrated. 80

23 Two stage VQ coder followed by a lattice quantizer to generate

layers of fidelity within a critical frequency band 96

24 Block diagram showing the different index layers formed. 103

25 Bar graph showing the bits/sample allocated by the optimization

program for a bitrate of 8 kb/s. 112

26 Bar graph showing the bits/sample allocated by the optimization

program for a bitrate of 16 kb/s. 113

27 Bar graph showing the bits/sample allocated by the optimization

program for a bitrate of 24 kb/s. 113

28 Bar graph showing the bits/sample allocated by the optimization

program for a bitrate of 32 kb/s. 114

xvi

1 INTRODUCTION

Scalable audio coding has many uses. One major application is real time

audio streaming over non-stationary communication channels or in multicast en-

vironments. Services like music-on-demand could be facilitated over systems that

support different bitrates to each user such as the recently developed 3G and

4G cellular systems. Digital radio systems might also use such scalable bit-rate

formats to facilitate graceful degradation of audio quality over changing trans-

mission channels rather than the sudden loss of signal that occurs with current

systems when the signal power drops below some threshold. Furthermore, scal-

able bit streams might also be used to smooth quality fluctuations in audio that is

broadcast over the internet: specifically, higher fidelity layers could be selectively

removed by transport nodes as needed when congestion occurs so as to retain

the best possible quality. The other advantage to having a scalable bit stream is

in transmission of audio over wireless channels having a fixed digital bandwidth.

Traditional (non-scalable) perceptually-transparent audio encoders have output

bit rates that change with time, requiring that a sophisticated rate buffer with

a feedback mechanism be used to control quantization in order to prevent rate

buffer over or under flows. This complex rate buffer can be avoided altogether

when using a finely scalable bit stream by simply transmitting as many layers of

fidelity as fit the available channel capacity.

1

Many scalable audio coding schemes have been proposed [1]–[18]. Scalable

audio compression schemes can be compared using three basic criteria; granularity,

(i.e., minimum increase in bitrate to achieve the next fidility level), the minimum

bitrate that can be supported, and seamless transition between successive bitrates.

Commercial audio coders like Real 8.5 and WMA scale down to only 24 kbits/s

and do not have much granularity. For example, WMA 8.0 scales down from 32

kbits/s to 16 kbits/s in a single step [15][16].

Some algorithms are designed to be efficient channel representations for scal-

able audio files, and does not study the problem of fidelity layering [4][12][13][14][18].

A new development in the field of scalable audio compression is the embedded au-

dio coder (EAC) [11]. In this work the author combines psychoacoustic principles

with entropy coding to create a technique called implicit auditory masking. Im-

plicit auditory masking relies on a bit plane coding scheme and layers each bit

plane by using a threshold calculated from the spectral envelope of the transform

domain coefficients; it is similar to the embedded zero tree wavelet compression

method used for images [19]. This method could not be used to compare with our

technique because code for the algorithm is not publicly available.

Recently, a lot of attention has been given to audio coding algorithms that

operate from scalable lossy to lossless audio quality [2][3][6]. These coding algo-

rithms operate on bitstreams that range from 92 – 128 kb/s whereas, the research

presented here deals with perceptually scalable audio compression at low bitrates

2

of 8 – 85 kb/s.

Despite the wide variety of coding schemes available, the MPEG-4 natural

audio coder still represents the current state-of-the-art [20]. The MPEG-4 audio

coder is a collection of different audio coding algorithms and can create scalable

bit streams. Many rigorous core experiments and evaluations have been performed

in the course of developing the MPEG-4 standard and it is the only framework for

which detailed information is available. In the following work we draw comparisons

with and apply some of the coding tools provided in the MPEG-4 standard. The

MPEG-4 audio coder uses different techniques to achieve scalability, the simplest

of which is to use a low rate coder to generate the first bit stream layer, and then

compress the resulting error residuals using some other algorithm to generate

layers of higher fidelity. This system, however, cannot generate more than two or

three layers of audio fidelity [21]. Fine grained scalability is achieved within the

MPEG-4 framework by using BSAC, either with the MPEG-4 scalable sampling

rate (SSR) scheme or with the MPEG-2 advanced audio coder (AAC) [9][22]

[20]. The SSR algorithm first applies a uniform 4-band cosine modulated filter

bank with maximally decimated outputs to the input audio sequence [23]. Each

rate-altered stream is then transformed by a modified discrete cosine transform

(MDCT), and the resulting coefficients are encoded in different layers. This allows

scalable reconstruction using the four different frequency bands with bit stream

scalability within each subband.

3

The scalability of MPEG4 however, is not psychoacoustically motivated. To

achieve psychoacoustic scalability, one must first decompose the signal so that

adding a single subband to those already reconstructed by the decoder increases

the fidelity of the reproduced audio in a way that is just discernable by a human

listener. This can only be achieved if the audio signal is decomposed into criti-

cal bands or Barks [24], and then encoded in a perceptually embedded fashion.

Furthermore, from a perceptual standpoint, it will almost certainly be optimal

to initially quantize some critical bands coarsely and then later to add additional

bits to improve the audio fidelity. In contrast to this idea, the MPEG-4 encoder

uses a 4-band filter bank that does not approximate the critical band filtering

well and only at the highest level of fidelity is each band psychoacoustically op-

timized. Thus, perceptual optimality cannot be guaranteed for the lower fidelity

layers generated from these finely quantized coefficients.

TWIN-VQ has a scalable version [10][1] that uses residual vector quanti-

zation (RVQ) to obtain a scalable bitstream. This technique splits the MDCT

coefficients within a frame into subvectors with some overlap between successive

subvectors. The codec then creates different bit-streams by quantizing the subvec-

tors separately from lower to higher frequencies assuming the lower frequencies to

be more significant than higher frequencies. However, this residual quantization

scheme does not perform any perceptual optimization in layering the different bit

streams. The different subvectors and their overlap is chosen based on heuristic

4

assumptions.

Experiments have been performed in this research that show scalable MPEG

AAC-BSAC performs poorly at low bit rates compared to high performance, non-

scalable coders like the TWIN-VQ and nonscalable AAC [25]. Nonscalable TWIN-

VQ performs almost 73% better in human subjective tests compared to scalable

AAC-BSAC at a rate of 16 kb/s (based on a comparison category rating scale).

Here, we develop a perceptually scalable audio coding algorithm based on the

TWIN-VQ format. We chose the TWIN-VQ as our starting point because it

is the best algorithm available for encoding bit rates below 16 kb/s – the most

difficult region for audio coding.

The conventional TWIN-VQ and its original scalable version quantizes the

flattened MDCT spectrum using interleave vector quantization and does not sup-

port the critical band specific quantization that is required to achieve optimal

fidelity layering [26][10]. In our work, however, we apply residual vector quanti-

zation separately to each critical band of human hearing. Doing so relates the

quantization error to its corresponding perceptual relevance, bringing us closer to

perceptually optimality.

To further improve perceptual optimality, we also develop a new method to

layer the residual bits based on perceptual relevance. This perceptual relevance is

calculated using certain objective metrics developed specifically for this purpose

[25]. Rigorous human subjective test results show that the scalable coder devel-

5

oped in this work performs 64-173% better than AAC-BSAC in the range of 16

to 24 kb/s and performs close to the nonscalable TWIN-VQ at the rates of 8 to

16 kb/s.

In the course of developing the residual VQs for our method we have also

developed a novel way to reverse engineer vector quantizers [27] [28]. To design VQ

codebook, we require a training set. In literature, the non-uniform bin histogram

method described by Fukunaga in [29] comes closest to estimating the source pdf

from a VQ codebook. The original TWIN-VQ used by the MPEG-4 standard was

developed by NTT, Japan, and the training data used by the original developers is

not available. This fact motivates our need for such an algorithm here. One could

always construct a training set by combining a large number of audio sequences,

but the resulting VQ might not be as good as the original, highly optimized one.

Instead, we synthesize new training data from the information embedded within

the TWIN-VQ codebook. The training data thus obtained was then used to design

the VQ codebooks for the sub-vectors representing the critical bands.

This thesis is organized as follows. Chapter 2 discusses the foundations of

perceptual audio coding, specifically introducing audio coding algorithms like the

AAC and AAC-BSAC. Chapter 3 explains non scalable TWIN-VQ while chapter

4 develops a method for reverse engineering vector quantizers and applies it to

TWIN-VQ to create a scalable compression algorithm. The modified, scalable

TWIN-VQ algorithm is presented in Chapter 5. An improvement on this algo-

6

rithm which uses scalable lattice vector quantization in many of the higher critical

bands to improve efficiency is also included in Chapter 5. In Chapter 6, we de-

scribe an objective metric for subjective audio quality, and we use it to determine

the bit layering for perceptually optimal fidelity control. Experimental results

and analysis are discussed in Chapter 7 while conclusions and future research are

presented in Chapter 8.

7

2 HUMAN AUDIO PERCEPTION

To compress a particular type of data it helps to have an accurate engineering

model of its source. For example, understanding of the human vocal tract and

its interaction with sound has been critical in developing efficient methods of

compressing human speech [30][31]. In the case of general audio signals, however,

good source models do not exist. Thus, to efficiently compress audio, we have

available only a generalized model for the receiver-i.e., the human ear.

The science of psychoacoustics characterizes human auditory perception. It

models the inner ear, characterizing its time-frequency analysis capabilities. Based

on this model, “irrelevant” signal information is classified as that which cannot

be detected by even the most sensitive listener. Irrelevant information is identi-

fied during signal analysis by incorporating into the coder several psychoacoustic

principles. The different psychoacoustic redundancies are: absolute threshold of

hearing, simultaneous masking, the spread of masking and temporal masking.

Combining these psychoacoustic principles, lossy compression can be performed

in such a way that the noise generated by it is not perceivable by human listeners

[32][33].

Most sound-related measurements are done using the sound pressure level(SPL)

units measured in dB. SPL is a standard metric that quantifies the intensity of

8

an acoustical stimulus [34]. It is a relative measure defined as follows

LSPL = 20 log10

(

p

p0

)

where LSPL is the SPL of a stimulus, p is the pressure level of the stimulus in

Pascals (1 Pa = 1 N/m2), and p0 is the standard reference level of 20µ Pa. The

dynamic range of intensity for the human auditory system is from 0 dB SPL,

limits of detection for low-intensity, to 150 dB SPL the threshold of pain.

2.1 Absolute Threshold of Hearing

The absolute threshold of hearing represents the amount of energy in a pure

tonal signal that can be detected by a listener in a noiseless environment [35].

The threshold is represented as a function of frequency over the range of audible

frequencies. This function is approximated by the following equation

Tq(f) = 3.64(f/1000)−0.8 − 6.5 exp−0.6(f/1000 − 3.3)2

+10−3(f/1000)4 (dB SPL).
(1)

Figure 1 represents the absolute threshold of hearing for a young listener with

acute hearing. In an audio compression system, the function Tq(f) is used to

limit the quantization noise in the frequency domain. There are two things that

prevent us from using the absolute threshold of hearing directly, however. First,

the threshold represented by (1) is associated with pure tonal stimuli, whereas

the quantization noise generated by a compression system has a more complex

spectrum. Second, the threshold represents a relative measure of the stimuli with

9

10
2

10
3

10
4

−10

0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

S
ou

nd
 P

re
ss

ur
e

Le
ve

l,
S

P
L

(d
B

)

Figure 1: The absolute threshold of hearing in dB SPL, across the audio spectrum.

It quantifies the SPL required at each frequency such that an average listener will

detect a pure tone stimulus in a noiseless environment.

10

respect to a standard reference level. Most audio compression algorithms have no

a priori knowledge of actual play back levels and thus no information about the

reference level. We can overcome this problem by equating the lowest point (i.e.,

near 4 kHz) to the energy in ±1 bit of signal amplitude.

Another commonly used acoustical metric is the sensation level (SL) measured

in dB. The SL quantifies the difference between a stimulus and a listener’s thresh-

old of hearing for that particular stimulus. Signals with equal SL measurements

may have different absolute SPL, but each SL component will have the same supra

threshold margin.

2.2 Critical Bands

Shaping the coding noise spectrum using the absolute threshold of hearing is a first

step in perceptual audio coding. The quantization distortion is not tonal in nature,

however, and has a more complex spectrum. The detection threshold for spectrally

complex quantization noise is a modified version of the absolute threshold, with its

shape determined by the stimuli in the signal present at any given time. Auditory

stimuli is time varying, which implies that the detection threshold is also a time-

varying function of the input signal. In order to understand this threshold, we

must first understand how the ear performs spectral analysis.

Within the ear, an acoustic stimulus moves the eardrum and the attached ossic-

ular bones, which, in turn, transfer mechanical vibrations to the cochlea, a spiral

11

fluid-filled structure which contains a coiled tissue called the basilar membrane. A

frequency-to-place transformation takes place in the cochlea (inner ear), along the

basilar membrane [34]. Once excited by mechanical vibrations at its oval window

(the input), the cochlear structure induces traveling waves along the length of the

basilar membrane. The traveling waves generate peak responses at frequency spe-

cific positions on the basilar membrane, and along the basilar membrane there are

hair-tipped neural receptors that convert the mechanical vibrations into chemical

and electric signals.

For sinusoidal signals, the traveling wave moves along the basilar membrane

until it reaches a point where the resonant frequency of the basilar membrane

matches that of the stimuli frequency. The wave then slows, the magnitude

increases to a peak and the wave decays rapidly beyond the peak. The loca-

tion where the input signal peaks is referred to as the ”characteristic place” for

the stimulus frequency [36]. This frequency dependent transformation can be

compared, from a signal processing perspective, to a bank of highly overlapping

bandpass filters. Experiments have shown that these filters have asymmetric and

nonlinear magnitude responses. Also, the cochlear filter frequency bands are of

non-uniform widths which increase with frequency.

The width of cochlear passbands or ”critical bands” can be represented as a

function of frequency. We consider two examples by which the critical bandwidth

can be characterized. In one scenario, a constant SPL, narrow-band noise signal

12

is introduced in a noiseless environment. The loudness (perceived intensity) of

this noise is then monitored while varying the signal’s bandwidth. The loudness

remains constant till the bandwidth is increased up to the critical bandwidth,

beyond which the loudness increases. Thus, when the noise is forced into adjacent

critical bands the perceived intensity increases, while it remains constant within

the critical band.

Critical bandwidth can also be viewed as the result of auditory detection with

respect to a signal-to-noise ratio (SNR) criteria. For a listener the masked thresh-

old of detection occurs at a constant, listener-specific SNR as assumed by the

power spectrum model presented in [37]. Given two masking tones, the detection

threshold of a narrowband noise source inserted between them remains constant

as long as both the tonal signals, and the frequency separation between the tones

remains within the critical bandwidth. If the narrowband noise is moved beyond

the critical bandwidth the detection threshold rapidly decreases. Thus, from an

SNR perspective, as long as the masking tones are introduced within the passband

of the auditory filter (critical band) that is tuned to the probe noise, the SNR

presented to the auditory system remains constant, i.e.– the detection threshold

does not change. However, as the tones spread further apart and forced outside

the critical band filter the SNR improves. For the power spectral model, there-

fore, to keep the SNR constant at the threshold for a particular listener, the probe

noise has to be reduced with respect to the reduction of energy in the masking

13

tones as they move out of the critical band filter passband. Thus, beyond the

critical bandwidth, the detection threshold for the probe tones decreases, and the

threshold SNR remains constant.

Critical bandwidth tends to remain constant (about 100 Hz) up to 500 Hz,

and increases to approximately 20% of the center frequency above 500 Hz. For an

average listener the critical bandwidth centered at a frequency f is given approx-

imately by

BWc(f) = 25 + 75(1 + 1.4(f/1000)2)0.69 (2)

Although (2) is a continuous function of f , for practical purposes the ear is con-

sidered as a discrete set of bandpass filters corresponding to (2). The band gap

of one critical band is commonly referred to as ”one Bark”. To convert from

frequency in hertz to the Bark scale the following formula is used.

z(f) = 13 arctan(0.00076f) + 3.5 arctan

[

(

f

7500

)2
]

(Bark) (3)

Another model used in audio coding is the equivalent rectangular bandwidth

(ERB) scale. ERB emerged from research directed toward measurement of audi-

tory filter shapes. To measure the ERB, human subjective experiments are per-

formed with notched noise masker and probe signals to collect relevant data. Spec-

tral shape of the critical bands are then estimated by fitting parametric weighting

functions to the masking data [37]. Most commonly used models are rounded

exponential functions with one or two free parameters. For example, the single-

14

parameter roex(p) model is given by

W (g) = (1 + pg) exp(−pg) (4)

where g = |f − f0|/f0 is the normalized frequency, f0 is the center frequency

and f is the input frequency in hertz. The roex(p,r), a two parameter model is

also used to gain additional degrees of freedom which iproves the accuracy of the

estimated filter shape. After curve fitting, an ERB estimate is obtained directly

from the parametric filter shape. For the roex(p) model, it can be shown that the

equivalent rectangular bandwidth is given by

ERBroex(p) =
4f0

p
. (5)

Combining a collection of ERB measurements on center frequencies across the

audio spectrum and curve fitting yields and expression for the ERB as a function

of center frequency, this formula is given by

ERB(f) = 24.7(4.37(f/1000) + 1). (6)

The critical bandwidth and ERB functions are plotted in Figure 2 and Figure 3

respectively.

Either the critical bandwidth or the ERB can be used to perform time-frequency

analysis on an audio signal. However, the perceptually relevant information in the

frequency domain is, in most cases, determined by the frequency resolution of the

filter banks. The auditory time frequency analysis that occurs in the in the critical

15

10
1

10
2

10
3

10
4

0

1000

2000

3000

4000

5000

6000

Frequency (Hz)

B
an

dw
id

th
 (

H
z)

Figure 2: Critical bandwidth BWc(f) as a function of center frequency

band filter bank induces simultaneous and nonsimultaneous masking phenomena

that are used by modern audio coders to shape the quantization noise spectrum.

The shaping is done by adaptively allocating bits to signal components depending

on their perceptual relevance.

2.3 Simultaneous masking

A sound stimulus, also known as the maskee, is said to be masked if it is rendered

inaudible by the presence of another sound or masker. Simultaneous masking is

said to occur if the human auditory system is presented with two or more signals

16

10
1

10
2

10
3

10
4

0

500

1000

1500

2000

2500

3000

Frequency (Hz)

B
an

dw
id

th
 (

H
z)

Figure 3: ERB(f) as a function of center frequency.

17

at the same instant of time. In the frequency domain, the shape of the magnitude

spectrum determines which frequency components will be masked and which will

be perceived by the listener. In the time-domain, phase relationships between

different stimuli can affect masking outcomes. An explanation of masking is that

the presence of strong noise or tone masker creates an excitation of sufficient

strength on the basilar membrane at the critical band location that the detection

of a weaker signal in nearby locations are blocked.

Audio spectra may consist of several complex simultaneous masking scenarios.

However, for the purpose of shaping quantization distortion it is convenient to

use three types of simultaneous masking: (1) noise-masking-tone (NMT) [38], (2)

tone-masking-noise (TMN) [39] and (3) noise-masking-noise (NMN) [40].

2.3.1 Noise-Masking-Tone (NMT)

In the NMT scenario of Figure 4, a narrow band noise with a bandwidth of one

bark, masks a tone within the same critical band. Where the intensity of the

masked tone is below a predictable threshold directly related to the intensity and

the center frequency of the masking noise.

A lot of experiments have been done to characterize the NMT for random noise

and pure tonal stimuli [41][42]. We first define the signal-to-mask ratio (SMR)

as the minimum difference between the intensity of the masking noise and the

intensity of the masked tone at the threshold of detection for the tone. The SMR

18

S
P

L
 (

d
B

)

Frequency (Hz)

Noise Masker

Threshold

Masked Tone

410

Critical

Bandwidth

S
M

R
 ~

 4
 d

B
80

76

Figure 4: Noise-masking-tone – at the threshold of detection, a 410 Hz pure tone

presented at 76 dB SPL masked by a narrow-band noise signal (1 Bark bandwidth)

with overall intensity of 80 dB.

19

is measured in dB SPL. Minimum SMR occurs when the masked tone is close to

the center frequency of the masking noise and lies between −5 and +5 dB for

most cases. Figure 4 represents a sample result from a NMT experiment. The

critical band noise masker is centered at 410 Hz with an intensity of 80 dB SPL.

A tonal masked signal with a frequency of 410 Hz is used and the resulting SMR

at the threshold of detection is obtained at 4 dB. The SMR increases if the probe

tone frequency is above or below the central frequency.

2.3.2 Tone-Masking-Noise (TMN)

In the case of TMN as shown in Figure 5, a pure tone occurring at the center of a

critical band masks a narrow band noise signal of arbitrary shape and lying within

the critical band, if the noise spectrum is below a predictable threshold directly

related to intensity and frequency of the masking tone. Similar to NMT, at the

threshold of detection for a noise-band masked by a pure tone, the minimum SMR

happens when the center frequency of the masked noise is close to the frequency

of the masking tone. This minimum SMR lies in the range of 21-28 dB which is

much greater than that for the NMT case. Figure 5 shows a narrow band noise

signal (1 Bark), with center frequency 1 kHz, being masked by a tone of frequency

1 kHz. The SMR at the threshold of detection for the noise is 24 dB. As with the

NMT, TMN masking power decreases for critical bandwidth probe noises centered

above and below the minimum SMR noise.

20

S
P

L
 (

d
B

)

Frequency (Hz)

Tonal

Masker

Threshold

Masked Noise

1000

Critical

Bandwidth

S
M

R
 ~

 2
4

 d
B

80

56

Figure 5: Tone-masking-noise – at the threshold of detection, a 1 kHz pure tone

at 80-dB SPL masks a narrow band noise signal of overall intensity 56 dB.

21

2.3.3 Noise-Masking-Noise (NMN)

In the NMN scenario, a narrow-band noise masks another narrow-band noise. This

type of masking is more difficult to characterize than either the NMT or TMN

because of phase relationships between the masker and maskee [40]. Different

relative phases between the two components can lead to inconsistent threshold

SMR. A threshold SMR of about 26 dB was reported of NMN using an intensity

difference based threshold detection methodology [43].

2.3.4 Asymmetry of Masking

For both the NMT and TMN cases of Figures 4 and 5, we note an asymmetry

in the masking thresholds, even though both the maskers are presented at 80

dB(SPL). The difference between the thresholds is 20 dB. To shape the coding

distortion so that it is not perceived by the human ear, we study the asymmetry

in the masking threshold for the NMT and TMN scenarios. For each temporal

analysis interval, the perceptual model for coding should identify noise-like and

tone-like components across the frequency spectrum. These components occur in

both the audio and quantization noise spectra. It has been shown that masking

asymmetry can be explained in terms of relative masker/maskee bandwidths, and

not necessarily exclusively in terms of absolute masker properties [44]. This im-

plies that the standard energy-based schemes for masking power estimation among

perceptual codecs may be valid only so long as the masker bandwidth equals or ex-

22

ceeds maskee bandwidth. In cases where the probe bandwidth exceeds the masker

bandwidth, an envelope-based measure is embedded in the masking calculation

[44].

2.3.5 The Spread of Masking

The simultaneous masking effects described above are not band limited to within

the limits of a single critical band. Interband masking also occurs – i.e., a masker

centered within one critical band affects the detection thresholds in adjacent crit-

ical bands. This effect is also known as the spread of masking, it is often modeled

in coding applications by a triangular spreading function that has slopes of +25

and -10 dB per Bark. An expression for the spread of masking is given by

SFdB(x) = 15.81 + 7.5(x + 0.474) − 17.5
√

1 + (x + 0.474)2 (7)

where x is frequency in Barks and SFdB(x) is measured in dB. After critical

band analysis is done and the spread of masking has been accounted for, masking

thresholds in perceptual coders are often established by the decibel relations

TNN = ET = 14.5 − B (8)

and

THT = EN − K (9)

where THN and THT are the noise and tone masking thresholds due to TMN and

NMT respectively. EN and ET are critical band noise and tone masker energy

23

levels, respectively. Finally, B is the critical band number.

Depending on the algorithm, the parameter K is typically set to between 3

and 5 dB. However, the thresholds of (8) and (9) capture only the contributions

of individual tone-like and noise-like maskers. In the actual coding scenario, each

frame typically contains a collection of both masker types. One can see easily

that (8) and (9) capture the masking asymmetry described previously. After they

have been identified, these individual masking thresholds are combined to form

a global masking threshold. The global masking threshold comprises of one final

estimate beyond which the quantization noise becomes just noticeable also known

as just noticeable distortion (JND). In most perceptual coding algorithms, the

masking signals are classified as either noise or tone and then the appropriate

thresholds are calculated by using this information to shape the noise spectrum

beneath JND. The absolute threshold of hearing is also considered when shaping

the noise spectra, and the maximum of the Tq and JND is generally used as the

permissible distortion threshold. Figure 6 illustrates a general critical bandwidth

and simultaneous masking threshold for a single masking tone occurring at the

center of a critical band. All levels in the figure are given in terms of dB SPL.

2.4 Nonsimultaneous Masking

In the above paragraphs we have shown the effects of masking within the spectrum

of a temporal frame. We have not, however, taken into consideration the effects

24

S
P

L
 (

d
B

)

Frequency (Hz)

Critical

Bandwidth

Masking

Tone

Masking

Threshold

Minimum

Threshold

N
M

R
S

M
R

S
N

R

Neighboring

Band

m

m + 1

m - 1

Figure 6: Schematic representation of simultaneous masking.

25

Pre-

Masking
Simultaneous masking Post-Masking

Masker

20

40

60

-50 0 50 100 150 0 50 100 150 Time (ms)

Time after masker removal
Time after masker

appearance

S
P

L
 (

d
B

)

Figure 7: Nonsimultaneous maksing properties of the human ear. Backward (pre)

masking occurs prior to masker onset and lasts only a few milliseconds whereas

post masking may persist for more than 100 ms after removal of masker.

of masking over time. Figure 7 depicts the effects of temporal or nonsimultaneous

masking. This type of masking effect occurs both prior to and after the appearance

of the masking signal. The skirts on both regions are schematically represented

in Figure 7. Essentially, absolute audibility thresholds for masked signals increase

prior to, during and following the occurrence of the masker. Pre-masking ranges

from about 1–2 ms before the onset of the masker while post-masking can range

from between 50 to 300 ms after the masker ends, depending on the strength and

duration of the masking signal [34].

There have been tutorial treatments of nonsimultaneous masking [37][40].

Here, we consider temporal masking properties that can be embedded within au-

26

dio coding systems. Of the two temporal masking modes, post-masking is better

understood. For masker and probe of the same frequency, experimental studies

have shown that the amount of post-masking depends in a predictable way on

stimulus frequency, masker intensity and masker duration [45]. Forward mask-

ing also exhibits frequency-dependent behavior similar to that of simultaneous

masking which can be observed when masker and probe frequencies are changed

[46]. Although pre-masking has also been studied, it is not as well understood as

post masking. Pre-masking clearly decays much rapidly than post masking. For

example, only 2 ms prior to masker onset, the masked threshold is already 25 dB

below that of simultaneous masking [47]. There is no consistent agreement on the

maximum time limit for pre-masking – it appears to be dependent on the training

given to the experimental subjects used to study the phenomenon.

2.5 Perceptual Entropy

Perceptual entropy (PE) refers to the amount of perceptually relevant information

contained in an audio signal. Psychoacoustic masking and signal quantization

principles were combined by Johnston to perform PE measurements [33][48]. PE,

represented in bits per sample, is a theoretical limit on the compressibility of

an audio signal. A wide variety of CD-quality audio signals can be compressed

transparently at about 2.1 bits per sample. The PE estimation is done as follows.

The audio signal is split into time frames and each of the time frame is transformed

27

into the frequency domain. Masking thresholds are then calculated based on the

perceptual rules described in previous sections of this chapter. Finally, the PE is

calculated as the number of bits needed to reconstruct the audio without injecting

perceptible noise.

The audio signal is first split into time-frames with 1024-2048 samples each.

These time frames are then weighted by a Hann window to take care of Gibbs

ringing effects which is then followed by a fast Fourier transform (FFT). Masking

thresholds are calculated by performing critical band analysis (with spreading),

determining tone-like and noise-like spectral components, applying thresholding

rules for the signal quantity, then accounting for the absolute hearing threshold.

First, real and imaginary transform components are converted to power spectral

components

P (ω) = ℜ2(ω) + ℑ2(ω) (10)

then a discrete Bark spectrum is formed by summing the energy in each critical

band

Bi =

bhi
∑

ω=bli

P (ω) (11)

where bli and bhi are the critical band boundaries. The range of index i is sample-

rate dependent, and in particular 1 ≤ i ≤ 27 for CD-quality audio. A spreading

function as in (7) is convolved with the discrete bark spectrum

Ci = Bi ∗ SFi (12)

28

to account for the spread of masking. An estimation of the tone-like or noise like

quality for Ci is then obtained using a spectral flatness measure (SFM) [64]

SFM =
µg

µa
(13)

where µg and µa are the geometric and arithmetic averages of the spectral com-

ponents of the power spectral density (PSD) within a critical band. The SFM

ranges between 0 and 1, where values close to 1 indicate noise like components

and values near 0 are more tonal in nature. A coefficient of tonality α is derived

from the SFM measurement on the dB scale,

α = min

(

SFMdB

−60
, 1

)

(14)

this coefficient is used to weight the threshold values calculated in (8) and (9) for

each band which results in an offset

Oi = α(14.5 + i) + (1 − α)5.5 dB. (15)

A set of JND estimates in the frequency power domain are then formed by sub-

tracting the offsets from the Bark spectral components

Ti = 10log
1
0(Ci)−(Oi/10). (16)

These estimates are scaled by a correction factor to simulate deconvolution of

spreading funcion, and each Ti is then checked against the absolute threshold of

hearing and replaced by max(Ti, Tq(i)). The playback level is configured such

29

Perceptual Model
Iterative Rate control

Scale

Factor

Extract. Quant.

Entropy

Coding

z-1PredictionTNSMDCT

256/2048 pt.
Gain

Control

Input

Frame

Side information coding, Bitstream formatting

To

Channel

Figure 8: MPEG-4 Advanced audio coder (AAC).

that the smallest possible signal amplitude is associated with an SPL equal to the

minimum absolute threshold. Applying uniform quantization principles to the

signal and the associated JND estimates, it is possible to estimate a lower bound

on the number of bits required to achieve transparent coding. In fact, it can be

shown that the perceptual entropy in bits per sample is given by

PE =
27
∑

i=1

bhi
∑

ω=bli

log2

(

2

⌊

ℜ(ω)
√

6Ti/ki

⌋

+ 1

)

+log2

(

2

⌊

ℑ(ω)
√

6Ti/ki

⌋

+ 1

)

(bits/sample)

(17)

where i is the index of the critical band, bli and bhi are the lower and upper

bounds of the critical band, ki is the number of spectral components in band i

and finally Ti is the masking threshold in the band. The masking threshold and

PE computations as shown above form the basis for most perceptual audio coding.

30

2.6 Advanced Audio Coder (AAC)

The AAC algorithm as shown in Figure 8 is a collection of coding tools. We

first describe the MPEG-2 AAC in this section and then briefly describe the

modifications done to it in the MPEG-4 standard. The AAC has three complexity

profiles, main, low (LC) and scalable sample rate (SSR) and each complexity uses

a specific combination of coding tools. Here, we describe the complete set of tools

used in the AAC algorithm [20].

First, a high resolution MDCT filter bank is used to obtain spectral repre-

sentation of the input. The MDCT used for AAC is signal adaptive. Stationary

signals are analyzed by a 2048-point window, while transients are analyzed with

a block of eight 256-point windows to maintain time synchronization for multi-

channel operations. For a sampling frequency of 48 kHz the frequency and time

resolutions obtained are 23 Hz and 2.5 ms respectively. The AAC filter bank also

can change between two different MDCT analysis window shapes. Window shape

adaptation is used to optimize filter bank frequency selectivity to localize masking

thresholds, thereby increasing perceptual coding gain. Both windows satisfy the

perfect reconstruction and alias cancelation requirements of the MDCT and they

offer different spectral analysis properties. A sine window is selected when narrow

passband selectivity is more beneficial than strong stopband attenuation, as in

the case of inputs characterized by dense harmonic structure (less than 140-Hz

31

spacing). On the other hand a Keiser-Bessell derived (KBD) window is selected in

cases for which stronger stopband attenuation is required, or when strong spectral

components are separated by more than 220 Hz [64][65]. The AAC also has an em-

bedded temporal noise shaping (TNS) module for pre-echo control (See Chapter

5).

The AAC algorithm realizes improved coding efficiency by applying prediction

over time to the transform coefficients below 16 kHz [49][50]. The bit alloca-

tion and quantization in the AAC follows an iterative procedure. Psychoacoustic

masking thresholds are first obtained as shown in the previous section. Both

lossy and lossless coding blocks are integrated into a rate-control loop structure.

This rate-control loop removes redundancy and reduces irrelevancy in one single

analysis-by-synthesis process. The AAC coefficients are grouped into 49 scale-

factor bands that mimic the auditory system’s frequency resolution, similar to

MPEG-1, Layer III [51][52]. A bit-reservoir is maintained to compensate for time-

varying perceptual bit-rate requirements.

Within the entropy coding block [53], 12 Huffman codebooks are available

for two- and four-tuple blocks of quantized coefficients. Sectioning and merging

techniques are applied to maximize redundancy reduction. Individual codebooks

are applied to time-varying sections of scale-factor bands, and the sections are

defined on each frame through a greedy merge algorithm that minimizes the bi-

trate. Grouping across time and intraframe frequency interleaving of coefficients

32

prior to codebook application are also applied to maximize zero coefficient runs

and further reduce bitrates.

For the MPEG-4 framework, the MPEG-2 AAC reference model was selected

as the “time-frequency” audio coding core. Further, the perceptual noise substi-

tution (PNS) scheme was included in the MPEG-4 AAC reference model. PNS

exploits the fact that a random noise process can be used to model efficiently,

the transform coefficients in noise-like frequency subbands, provided the noise

vector has an appropriate temporal fine structure [54]. Bit-rate reduction is re-

alized since only a compact, parametric representation is required for each PNS

subband rather than requiring full quantization and coding of subband transform

coefficients.

2.7 Bit-slice Scalable Arithmetic Coding

The concept of bit-sliced scalable arithmetic coding (BSAC) was introduced for

audio coding in [55] and is standardized as a part of MPEG-4 [20]. BSAC plays

the role of an alternative lossless coding kernel for MPEG-4 AAC, utilizing the

MDCT and applying a perceptually controlled bandwise quantization to the spec-

tral values. The main difference between BSAC and the standard AAC lossless

coding kernel is that the quantized values are not Huffman coded, but arithmeti-

cally coded in bitslices. This allows a fine grain scalability by omitting some

of the lower bitslices while maintaining a compression efficiency comparable to

33

the Huffman coding approach for the quantized spectral values. In the MPEG-4

AAC/BSAC codec the bitslices of the perceptually quantized spectral values are

already ordered in a perceptual hierarchy. In this way more perceptually shaped

noise is introduced as more and more bitslices are omitted.

34

3 TRANSFORM DOMAIN WEIGHTED INTERLEAVED VECTOR

QUANTIZATION

Transform-domain weighted interleave vector quantization (TWIN-VQ) is a

method used for compressing audio signals which has been found to be particu-

larly effective at low bit rates [56] [26]. Figure 9 shows block diagrams describing

the TWIN-VQ encoder and decoder. The input signal is first split into time frames

of 1024 samples. This frame is then transformed into the frequency domain using

MDCT

LPC Analysis

Side Information

Bark Scale

Analysis

Side Information

Weighted

 VQ
Output

Indices
Input

Signal

Inverse VQ

LPC Analysis

 Side Information

Bark Scale

Analysis

 Side Information

X IMDCT
Output

Signal

 Input

 Indices
X

(a) Encoder

(b) Decoder

:− :−

Figure 9: TWIN-VQ block diagram (a) Encoder (b) Decoder.

35

a 1024-point modified discrete cosine-transform (MDCT) while at the same time

the linear predictive coding (LPC) spectrum is calculated directly from the input.

The LPC spectrum provides a rough representation of the spectral envelope of the

MDCT coefficients, and it is used to normalize the MDCT coefficients to obtain

a flat spectrum by division in the MDCT domain. This is equivalent to perform-

ing linear predictive filtering and subtraction in the time domain to obtain the

residual error signal (i.e., the signal with the predictable portions removed). Fur-

ther normalization of the MDCT spectrum is done using the bark scale envelope.

Bark-scale envelope normalization is performed mainly to improve quantization

performance of signals with a lot of harmonic structure. Finally, quantization of

the final flattened spectrum is accomplished by using weighted interleave vector

quantization. The linear prediction coefficients and the power envelope from the

second flattening operation are also quantized and transmitted to the decoder as

side information.

The decoder simply inverts the steps of the encoder as illustrated in Figure 9.

The flattened spectrum is reconstructed from the VQ indices and the reconstructed

bark scale coefficients and linear predictive coefficients multiply this spectrum to

obtain an approximation of the original spectrum. A single frame of the time

domain audio signal is then reproduced by applying the inverse MDCT transform

to the reconstructed MDCT coefficients.

In the introduction, we stated that our intention is to modify the TWIN-VQ

36

algorithm to create a perceptually scalable audio coder. Note that it is only in the

quantization and encoding stage that psychoacoustic and statistical redundancy

are truly removed. Virtually all of the information removed by the prediction

stages in the encoder is added back to the signal in the decoder. It is thus this

stage that we must modify in the conventional TWIN-VQ algorithm to generate

a scalable bit stream. The quantizer in TWIN-VQ uses three main concepts: (1)

weighted vector quantization, (2) vector interleaving and (3) two-channel conju-

gate VQ [57] [58] [59]. We will discuss each of these in the following sections.

3.1 Weighted Vector Quantization

Weighted vector quantization (WVQ) is a VQ equivalent of adaptive bit allocation.

Adaptive bit allocation determines an optimal bit allocation scheme for a given

collection of random variables (the MDCT coefficients, in our case), based on the

variance of each random variable. The coding advantage or SNR improvement

obtained by using adaptive bit allocation is given by

G =

∑m
i=1 λi

m
∏m

i=i (λi)
1

m

(18)

where λ2
i is the variance of the ith variable. Optimal bit allocation works by

allocating bits to random variables proportional to their variances, but for percep-

tually optimal bit allocation the variances must be modified to take into account

the masking properties of the human ear.

37

x LPC

Code Book

VQ
Indexe

c

H

Figure 10: Vector quantization scheme for LPC residue.

A linear predictive coder (LPC) decorrelates successive samples in a signal.

For a vector x of successive samples [x[1], x[2], . . . , x[N]]T , a linear predictor is

an FIR filter with coefficients hT = [h1, h2, . . . , hN]. The filter coefficients can be

obtained by spectral factorization of the autocorrelation matrix R = E(xxT) [21].

As shown in Figure 10, quantization is performed by finding the best code

vector c so as to minimize the distortion d between the input residual x and the

vector Hc, determined by synthesizing the residual codebook vector c. Here, H

denotes the impulse response matrix of the LPC synthesis filter: i.e.,

H =

1 0 · · · 0 0
h1 1 · · · 0 0
h2 h1 · · · 0 0
...

... · · · ...
...

hm−1 hm−2 · · · h1 1

,

and we use HT to denote its transpose. If Euclidean distance is used, then dis-

tortion is given by

d = ‖x −Hc‖2. (19)

Assuming the power of the input vector x is normalized so that the residual

38

power is unity, we can write x as

x = He (20)

where e is the LPC residual vector. Replacing x in equation (19) with (20) we

get

d = ‖He −Hc‖2 = (e − c)THTH(e− c). (21)

Since H is a factor of the correlation matrix R of the vector x we can say

d = (e − c)TR(e − c). (22)

Because R is a positive definite matrix, we can diagonalize it with a unitary matrix

U that is composed of the eigenvectors of R

Λ = UTRU = diag[λ1, · · · , λm]. (23)

The eigenvalues λi are all non-negative and represent the variance of each random

variable in x. Rewriting the distortion d using (23), we have

d = (e − c)TUΛUT (e − c)

=
∑m

i=1 λi(Ei − Ci)
2

(24)

Equation (24) now represents the distortion as a weighted sum of the quantization

error between the transformed residual vector E and the transformed codevector

C: i.e.,
E = UTe = [E1, E2, . . . , Em]T

C = UTc = [C1, C2, . . . , Cm]T .

39

The transformation UT is the Karhunen-Loeve transformation (KLT) for an au-

toregressive random process. Clearly, the quantization error in the transformed

domain, as computed in (24), is the same as that in the time domain as found in

(19). Thus, linear predictive quantization in the time domain can be represented

as a weighted vector quantization in KLT domain.

In this section, we want to quantify the quantization gain achieved by using

weighted vector quantization (WVQ). To do so, we first show that if a source is

uniformly distributed, the SNR gain due to WVQ matches the SNR gain for adap-

tive bit allocation in (18). Let x = [x1, . . . , xm]T be a m dimensional, uniformly

distributed vector with variances λ1, . . . , λm. Now, we introduce two vector quan-

tizer code books Cu and Cw that both contain the same number of codewords

and thus operate at the same bitrate of b. Codebook Cu is designed as a lattice

formed by uniform scalar quantization of each component xi of the vector x. If

the vector x is uniformly distributed over a hyper-rectangle of edge length Li with

respect to the component xi, then all of the VQ bins are hyper-rectangles of edge

size Li/N , where N = 2b, and the centroid is the corresponding codeword cu. The

average distortion for this case is given by

du =

∫ L1/N

0

· · ·
∫ Lm/N

0

m
∑

i=0

(xi − cui)
2dx1 · · · dxm. (25)

Equation (25) is nothing more than the variance of the VQ bin normalized by

the total volume. The average distortion can also be written in relation to the

40

individual variances λi as

du = k

m
∑

i=1

λi (26)

where

k =
1

3

m
∏

i=1

λ
1/2
i . (27)

Now, we construct the codebook for the weighted VQ Cw in a similar fash-

ion. In this case we use a lattice of uniform scalar quantizers with bi bits per

dimensional component xi. The optimal value of bi [21] is given by

bi = b +
1

2
log2

λi
(

∏m
i=1 λ

1

m

i

) (28)

and Ni the number of levels for the ith variable is given by Ni = 2bi. Using

the uniform quantization assumption and noting that the number of quantization

levels for index i is given by Ni = 2bi , the edge size of the ith VQ bin becomes

Li

Ni

= 2−bLi

∏m
j=1 λ

1

2m

j

λ
1

2

i

. (29)

Here, we use the weighted distortion integral to calculate the distortion instead

of the simple Euclidean distance-based distortion. Thus, the weighted distortion

is given by

dw =

∫ L1/N1

0

· · ·
∫ Lm/Nm

0

m
∑

i=0

λi(xi − cwi)
2dx1 · · · dxm. (30)

which on simplification yields

dw = km

(

m
∏

i=1

λ
1

m

i

)

(31)

41

Thus, dividing (26) by (31) we can see that the coding gain for weighted VQ is

the same as that given for adaptive bit allocation (18).

3.2 Interleaving

So far we have analyzed the gain G obtained by using a WVQ. Now, we would like

to examine the relationship between the transform size m and the coding gain.

The correlation matrix R is a symmetrical Toeplitz matrix. In this case, the SNR

gain

SNG = 10 log10 G

can be explicitly expressed by the transform size m and PARCOR parameters pi

as follows [30]:

SNG = −10 log10

(

n
∏

i=1

(1 − p2
i)

m−i
m

)

. (32)

It can easily be shown that the linear prediction gain approaches this SNR

gain if the prediction filter size is large. This equation is useful for estimating the

relationship between the performance and the transform size. Since this estimate

holds for the time domain quantization procedure of (19), it is also useful for

estimating the performance of these coders in relation to the length of the delay

or the vector dimension.

As shown above, while a high SNR gain is expected for a large transform size

m, the vector dimension must be kept small for the following practical reasons.

At a fixed bitrate, computation complexity and the codebook size of the vector

42

quantization are exponentially proportional to the vector dimension. In order

to cope with these situations, it is necessary to split the full code vector c into

subvectors. If one splits it into J l-dimensional subvectors, SNR gain is given by

SNGs = 10 log10

(
∑m

i=1 λi/m)
(

∑J
j=1 dj/J

)

 (33)

where dj is the geometric mean of the weighting factors for each subvector as

follows:

dj =
∏

k∈Mj

λ
1/n
k

Mj denotes the index set of the elements which belong to the jth subvector.

In general, SNGs ≤ SNG, since the denominator of (33) is the arithmetic

mean of dj while that of 18 is the geometric mean of dj. However, equality holds

if dj is uniformly independent of j–i.e., even if the transform components are split

into subvectors, SNR gain remains unchanged provided that the geometrical mean

of the weighting factors for subvectors can be made equal.

Up to this point in our analysis, we have assumed that the transform used is

the KLT as described earlier. The KLT is not a general transform; it is specific

to a particular AR process. The TWIN-VQ algorithm, on the other hand, is

meant to deal with arbitrary audio signals, and thus uses the suboptimal (but

very effective) modified discrete transform (MDCT).

The complete set of MDCT coefficients passed to the VQ stage forms a very

large vector, typically in the range of 256-1024 elements within the TWIN-VQ

43

x1 x12x11x10x9x8x7x6x5x4x3x2

x1 x3 x5 x7 x9 x11 x2 x4 x6 x8 x10 x12

Figure 11: Interleaving a 12 dimensional vector into two 6 dimensional vectors

framework. Quantizing the whole MDCT coefficient set as a single vector is not

feasible because of the high computational complexity of the VQ index search and

the difficulty achieving a good design using algorithms like the generalized Lloyd

algorithm that generate only locally optimal solutions. The TWIN-VQ algorithm

overcomes these difficulties by splitting the large MDCT coefficient vector into

smaller sub-vectors such that the geometric mean of the weighting coefficients

corresponding to each sub-vector remains the same. This is done by decimating

the MDCT spectrum by the number of sub-vectors to be generated. For exam-

ple, if [x1, x2, x3, x4, . . . , xn−1, xn]T is an n dimensional vector, interleaving it into

two sub vectors would give the vectors [x1, x3, . . . , xn−1]
T and [x2, x4, . . . , xn]T as

illustrated in Figure 11.

3.3 Two-Channel Conjugate VQ (TC-VQ)

The final quantization step in TWIN-VQ is performed using a technique called

two-channel conjugate VQ (TC-VQ). TC-VQ uses two different codebooks that

in some sense are “conjugates” of each other [58]. The TC-VQ encoder selects a

44

codebook vector from each of the two codebooks, calculates the average, and then

compares this average to a given input vector using a perceptually weighted mean

square distortion measure; i.e.,

d2 =

N
∑

i=1

N
∑

j=1

(

x − y1i + y2j

2

)T

W

(

x − y1i + y2j

2

)

. (34)

In the above equation, x is the input vector, y1 and y2 denote vectors from the

conjugate codebooks and W is a diagonal matrix with the perceptual weight

values along its diagonal. Indices of the pair of codebook vectors that minimize

the distortion are then transmitted to the decoder. A conjugate VQ structure has

much higher resolution than a normal codebook of the same size. As a simple

example, consider a TC-VQ codebook with N code vectors in each conjugate

codebook. The effective number of codevectors that can be represented is N2–

many more than the 2N codevectors that could be constructed using a simple VQ

codebook with the same number of elements. The length of the corresponding

channel codeword b is also reduced by half and the probability that the indices

of both output vectors are corrupted in transmission is significantly reduced. In

contrast, if only one codebook is used, the distortion significantly increases when

a transmitted code vector is lost.

For example, the SNR performance for a Gaussian source is approximately

proportional to the bitrate r per sample. The proportional constant in dB is

10 log10(4) or approximately 6 dB/bit. If the bitrate is reduced from r to r/2, the

45

SNR will decrease 3r dB. Thus, given a fixed bitrate, a two conjugate codebook

system results in reduced distortion when transmission errors occur compared to

a single codebook system.

3.3.1 Design of Conjugate Codebooks

Conjugate codebooks can be designed from a training set of vectors using an

iterative algorithm that is similar to the generalized Lloyd algorithm [21]. In this

method, both codebooks are simultaneously optimized by locally minimizing the

quantization distortion. The convergence of the algorithm is guaranteed because

the distortion is minimized at each iteration of the algorithm.

Any random codebook can be used as the starting point. If the improvement

in distortion becomes less than a threshold, the codebooks are considered to have

converged to the optimum.

1. Quantization of ui. For all training vectors ui, the best pair of intermediate

reconstruction vectors y1m and y2n is selected so as to minimize d from given

codebooks Y1 and Y2.

2. Fix codebook Y2 and renew codebook Y1. The new intermediate recon-

struction vector y1n is derived from the average distortion Dn for the old

y1n. The average distortion is given by

Dn =
N
∑

j=1

∑

ui∈
y1n⊗y2j

‖ui −
y1n + y2j

2
‖2.

46

Quantization

D < Th

 Renew

Centroids of

 Y1

No

Yes

Stop

Initial Codebooks

Alternate

 Renew

Centroids of

 Y2

Figure 12: Conjugate codebook design algorithm.

To estimate the codebook vector in Y1 that minimizes the average distortion,

we differentiate it by y1n and equate to zero. The resulting expression for

the new codebook vector is

y1n = Ψ−1
N
∑

j=1

∑

ui∈
y1n⊗y2j

(2ui − y2j),

where

Ψ =
N
∑

j=1

∑

ui∈
y1n⊗y2j

1.

3. The above step is repeated, but this time the codebook Y1 is fixed, and

code vectors y2m are renewed.

4. The average distortion is checked and the process is stopped if the difference

in distortion falls below a particular threshold.

47

5. These above steps are repeated till the condition in the previous step is met.

The same training set is used for each iteration.

A simple flow chart for this process is as shown in Figure 12.

3.3.2 Fast Encoding for Conjugate VQ

In conjugate VQ, one codevector is chosen from each codebook to encode an input

vector. The chosen pair of codevectors should minimize the distortion. The most

straight forward method of searching for the best pair is to calculate the distortion

measure for all possible pairs, but this approach is not practical because of its high

computational complexity. For example, for a twin codebook of 32 codevectors

each, the number of distortion computations is on the order of 322 = 1024. To

overcome this problem, we use a fast encoding strategy which splits the encoding

process into two steps: pre-selection and main-selection.

During pre-selection, a fixed number of candidate codevectors are chosen from

a codebook and stored in a buffer where the number of candidates is less than the

codebook size. The candidates chosen are those most likely to result in the mini-

mum distortion and this procedure is performed separately for both the codebooks.

In the main-selection process, all pairs of candidates obtained in the pre-selection

process are combined, and their distortion measures are calculated. The pair giv-

ing the minimum distortion measure is chosen as the encoded output. Clearly the

main selection process is actually identical to the optimal encoding process except

48

that it operates on a smaller set of codevectors.

The pre-selection process can be further organized by performing an area-

localized pre-selection. Here, the codebook is divided into smaller sections, with

the number of sections being equal to the number of candidates in the preselection.

This organization of the codebook vectors within the candidate buffer simplifies

the programming and reduces the search complexity.

Finally, the computation can be further reduced by reusing parts of the pre-

selection process within main-selection. In the main-selection procedure, all pos-

sible pairs of pre-selection candidates are evaluated by the distortion measure,

based on the following equation

d2 = ‖y1 + y2 − x‖2 (35)

where, y1 and y2 are codevectors in the codebooks Y1 and Y respectively, and x

is the input vector to be encoded. Weighting factors have been omitted in (35)

for clarity, but the idea is identical for the WVQ case. Many of the computations

in the above equation can be split between the pre- and main-selection processes.

The method used to split the task of computing (35) is called hit zone masking.

To understand this method let us rewrite (35) as

d2 = ‖(y1n + y1p) + (y2n + y2p) − x‖2 (36)

where the subscript n and p denote the normal (perpendicular) and parallel com-

49

x

y1
y2

Hit Zone

hit

Doesn't hit

hit

y1p y2p

d min

Figure 13: Hit zone masking method.

ponents of a vector. Mathematically this can be represented as

y = yn + yp (37)

where yn⊥y and yp‖y. Given that the inner product of normal vectors is zero,

(36) can be simplified to

d2 = ‖(y1n + y2n)‖2 + (‖y1p‖ + ‖y2p‖ − ‖x‖)2. (38)

The first term of (38) is always positive, so the distortion measure is always greater

than the second term, i.e.,

d2 ≥ (‖y1p‖ + ‖y2p‖ − ‖x‖)2. (39)

The hit zone masking exploits this characteristic. Figure 13 illustrates this method

with the current minimum distortion measure in the main-selection process ex-

50

pressed by dmin. The area between the parallel dashed lines is called the “hit

zone”. If the sum of two candidate vectors is outside the hitzone then the distor-

tion measurement for the pair is skipped since this pair cannot minimize dmin.

This hit-zone judgement can be determined by adding the parallel vector com-

ponents and this sum must be in the range ‖x‖ ± dmin to be in the hit zone.

Parallel vectors can be added with low computational complexity because this is

a scalar (i.e., element by element) operation.

The distortion measure for pre-selection within either code book is given by

d2
p = ‖2y − x‖2

= 4‖y‖2 − 4y · x + |x‖2,
(40)

where dp is the distortion measure. On the other hand, the distortion measure for

main-selection as described by (35) can be written as

d2 = ‖y1‖2 + ‖y2‖2 − 2y1 · x

−2y2 · x − 2y1 · y2 + ‖x‖2.
(41)

Note that the first four terms of the above equation have already been calculated

for the pre-selection distortion measure. Thus, these terms can be saved after

the pre-selection step and reused during the main-selection. Furthermore, the

last term ‖x‖2 is calculated only once, and remains a constant throughout the

encoding process.

The coder proposed in this work uses the fast conjugate vector quantizers

described above. The fast encoder is especially useful here since we must encode

each critical band separately using multiple conjugate vector quantizers. Using a

51

full search quantization, the proposed scalable coder would not be feasible because

of the high computational complexity of its implementation.

52

4 REVERSE ENGINEERING THE TWIN-VQ

Developing a new, competitive audio compression algorithm is not an easy task.

In this work, we modify Twin-VQ as implemented in the MPEG 4 natural audio

coder reference software to create a scalable algorithm that is effective at low

bit rates [56][60]. The Twin-VQ tools in the MPEG 4 reference software was

developed by NTT corp., Japan. The training data used to design the VQs by

NTT has not, however, been made public. Therefore, the training set required to

design a scalable coder which is similar to Twin-VQ is not readily available. In

our case, we need a training set to design new VQs for each of the different critical

bands. In this chapter we describe a method to synthesize the required training

set from the original Twin-VQ codebook itself.

Vector quantizers are used primarily for data compression to speed transmis-

sion or to reduce storage requirements. In many compression systems, operations

like linear prediction, subband decomposition or wavelet transformation are car-

ried out prior to the use of VQ. Thus, the signal that is encoded by the VQ is

already represented in an efficient manner – i.e. with much of the signal energy

concentrated into a few coefficients. An optimal VQ codebook contains a great

deal information about an underlying data source model which can be extracted

and used to design a new codec having a different structure and yet optimized for

the same source model. The redesign process for a new VQ-based system involves

53

training the system again using either a set of collected signals or a probability

density function (pdf) that models the source of the signal. Since neither the

source pdf nor the original training set are available, we would normally have

to create our own training set of audio sequences. However, VQ codebooks opti-

mized for a particular training set does not necessarily work well for other training

sets. A simple experiment to demonstrate this is performed in the experimental

verification section. In the case of the Twin-VQ, the developers may have even

formatted the training data to give a more generalized representation of the un-

derlying source. Thus, a VQ designed over an arbitrary training set of available

audio sequences may not perform as efficiently as the original, highly optimized

Twin-VQ codebook.

A simple way to design a new VQ from an existing VQ is to transform the

codebook vectors of the old VQ in such a way that all pre-quantization processing

(e.g. transformations) are inverted. This technique works perfectly if the pre-

processing operations are linear and orthogonal. In particular, if a transformation

is orthogonal, the distance measure (the mean square error, MSE, for the VQ)

is preserved in the transform domain [21]. In this chapter, we discuss a method

to reverse engineer VQs for nonorthogonal transformations and to repartition the

VQ into multiple, lower dimensional VQs, each optimal for arbitrary subspaces of

the original codeword space. We then apply this method to Twin-VQ to create

separate vector quantizers for each critical band and thus allow for perceptual

54

scalability.

Our aim is re-engineer the TWIN-VQ coder to be scalable – i.e., to have a

layered quantization scheme in which each layer adds a small increment of fidelity

to the reconstructed audio signal. The first step in designing such a system is to

partition the VQ designed for original MDCT signal space into subspaces corre-

sponding to the different critical bands of human hearing (e.g. the bark scale)[32].

Note that partitioning of vectors into sub vectors can be viewed as a linear trans-

form in which distance is not preserved. Consequently, directly partitioning the

original codebook into subvectors corresponding to critical bands does not lead

to a good solution as we will show here. Instead, the reverse engineering scheme

proposed here turns out to be far more effective.

Most current image compression systems use transforms such as the DCT

(Discrete Cosine Transform) and the DWT (Discrete Wavelet Transform). These

transforms are either orthogonal transforms or close to orthogonal transforms (as

in the case of 9-7 or 5-3 biorthogonal wavelet transforms), so reverse engineering

them is straight-forward and does not require the approach developed here. We

note, however, that some of the new transforms that have been recently developed

for image compression like the contourlet and curvelet transforms are not even

close to orthogonal. Thus, the proposed reverse engineering scheme might be

highly effective when applied to these more recent compression systems.

In practical compression systems, VQ is often applied toward the end of the

55

Linear

Transform
VQ

Losless

Compression

Input

Vectors

Output

Bitstream

(a)

Linear

Transform

VQ
1Input

Vectors

VQ
2

Subspace 1

Subspace 2

Output

Indices 1

Output

Indices 2

(b)

Figure 14: Block diagrams of a general VQ based compression systems. (a) sys-

tem that quantizes a transformed signal using VQ. (b) a system that quantizes

subspaces of the original signal separately.

56

encoding process and has the effect of reducing the bitrate of the signal represen-

tation dramatically. Most operations prior to the VQ are linear and deterministic

and they can almost always be easily inverted. Furthermore, these operations can

be identified and characterized simply by studying the decoder implementation.

Therefore, if we can synthesize a training set from the VQ codebook, we can

always pass each element in this set through the various inversion stages of the

decoder to create a training set for the original signal space (in our case, the space

containing all possible audio signals). In this chapter, we describe a method of

synthesizing a training set from a VQ and using it to design new VQ codebooks

for arbitrary spatial partitionings and transformations of the original vector (au-

dio signal) space. Figure 14 shows two notional compression systems using vector

quantization. In Figure 14(a) the original signal is transformed and the VQ is

applied directly to the transformed signal while in Figure 14(b) the signal vector

is split into two subvectors that are each fed into separate VQs, illustrating the

spatial partitioning for the vector space previously mentioned.

The most commonly used VQ design approaches are random coding, pruning,

pairwise nearest neighbor, splitting, and the Linde, Buzo, and Gray (LBG) or

the generalized Lloyd algorithm [21][61]. The common requirement for all these

algorithms is that they use a set of random samples (a training set) generated by

an underlying probability density function (pdf) rather than the pdf itself since

finding closed-form, optimal solutions is extremely difficult even when it is known

57

exactly. Therefore, the most straight forward way to reverse engineer a VQ is

to synthesize a training set whose statistics match those of the original training

set as closely as possible. The original codebook can be seen as a variable bin

histogram representing the original training set.

4.1 Training Set Synthesis

We need an accurate estimate of the underlying signal pdf to synthesize a good

training set. Furthermore, to simplify modeling on a computer the estimated

pdf should be a superposition of simple functions. Many techniques have been

proposed to estimate densities from training set data including nearest neighbor,

Parzen’s window and histograms [62][63]. The problem in our case is that the

amount of data available to us has been reduced to the number of elements in the

codebook by the LBG or some other clustering algorithm. The earliest density

estimation techniques developed for reduced data sets use the condensed nearest

neighbor rule (CNN) [64][65], and the technique is still of interest to researchers as

evidenced by recent work [29][66][67]. These techniques can be broadly classified

as nearest neighbor (NN) based techniques or Parzen’s window-based techniques.

Unfortunately, the NN-based techniques do not result in functions of known and

easily generated random variables that can be used to generate training vectors.

Parzen’s window estimators, on the other hand, provide a representation that is

a linear combination of simple pdf functions (e.g. “windows”) like Gaussian or

58

the uniform densities. To use a Gaussian window effectively, one must be able

to estimate the variance or, in the multidimensional case, the covariance matrix

of each window function [67]. Unfortunately, the VQ codebook does not contain

enough information to do this accurately. The obvious choice, then, is to use the

uniform window function which requires only a weight and the width/spread –

quantities that can be easily estimated from the polytope formed by each VQ bin.

Note that this approach is similar to the way in which variable bin size histograms

are designed [62]. A histogram measures the frequency of occurrence of vectors

in specific cells whose sum total partition the entire vector space (as defined by

the vectors of the training set), and the frequency of a particular cell is thus an

estimate of the probability mass of that cell. If the cell size is reduced (resulting

in an increase in the number of cells), the estimate converges asymptotically to

the pdf of the training set [29]. Consequently, the histogram of a training set

approximates the shape of the original pdf.

In our problem of synthesizing a representative training set, we are given only

the VQ codebook vectors and, if available, the entropy codes assigned to each

codebook index. To develop a synthesis methodology, we must study the VQ

design process. The main aim in the design of the VQ is to find a codebook

specifying the encoder that will maximize the overall performance as specified

by the statistical average over a suitable distortion measure. We use here mean

square error as our distortion measure. The encoder and decoder are completely

59

specified by the partition of the vector space into the cells R1,R2, . . . ,RN and

the codebook, C = {y1,y2, . . . ,yN}, respectively. Optimality for the partition

satisfies the nearest neighbor (NN) condition – i.e., for a given set of output

levels, C, the optimal partition cells satisfy

Ri ⊂ {x : d(x,yi) ≤ d(x,yj)} (42)

and the optimal code vectors for a given partition satisfy the centroid condition

given by

yi = cent(Ri). (43)

For the squared error or Euclidean distortion measure, the centroid of a set Ri is

simply the minimum mean square estimate of X given X ∈ Ri, i.e.

yi = cent(Ri) = E(X|X ∈ Ri) (44)

The conditions of (42) and (43) are the necessary but not sufficient conditions

for optimality of a VQ codebook and partition. By iteratively applying the two

conditions, one can obtain a VQ design that is at least locally optimal. As men-

tioned earlier, this VQ design procedure is similar to the problem of constructing

a variable bin histogram [29]. A variable bin histogram is generated by assuming

m cells A1, A2, . . . , Am, each characterized by the coordinate of the center xi and

the number of samples within each cell ki. In the VQ case, cells are characterized

by the VQ codebook entries and the partition rule. The only thing missing is the

60

number of samples within each cell. This, however, can be estimated from the

entropy codes assigned to each codebook entry since the entropy code depends

on the probability of the code word. Furthermore, the shape of the underlying

pdf of the training set is preserved in the spacing of the cells and in their shapes,

i.e., - the larger a cell, lower its probability density at any given point within it.

Given these assumptions, a training set can be synthesized by generating uni-

formly distributed vectors for each VQ partition. This requires us to generate

random variables distributed according to a constant density over the polytopal

partition cell. To create such random vectors, we first generate a uniform pdf over

a Cartesian grid which encloses the VQ cell. We then choose N vectors generated

by this pdf which fall inside the VQ partition. The following discussion justifies

this technique for generating uniformly distributed vectors within an irregularly

shaped polytopal region. Let U be the support of a uniform pdf p(x) and let S

be the uneven partition as shown if Figure 15. Here S is a proper subset of U and

L is the compliment of S with respect to U. The pdf p(x) can then be written as

p(x) = P1p(x|x ∈ S) + P2p(x|x ∈ L) (45)

where P1 and P2 are the probabilities that x ∈ S and x ∈ L, respectively. The

above equation can also be interpreted as a classification problem where the two

classes are S and L and the classes are mutually exclusive – i.e. there is no

intersection between the sets. Since the two classes are mutually exclusive, the

61

S

U

Figure 15: An irregular convex polytope S enclosed in the region of support for a

uniform pdf over the region U.

underlying pdfs must also be uniform. Thus, the vectors generated by p(x) within

the set S will be uniformly distributed in S. By synthesizing training sets for each

VQ partition according to the probability of the partition and combining these

sets, we generate a complete training set that has a histogram similar to that of

the original training set.

The following steps outline the proposed technique for synthesizing a training

set from a VQ codebook:

1. Assume that the original training set is large compared to the VQ codebook

size and that the number of number of elements in it is M . If indices are

entropy coded, we can estimate the probability of a codebook vector, p(yi)

62

since it is inversely proportional to the number of bits assigned to the code

vector. This probability estimate multiplied with M provides the number of

vectors in each partition. If an entropy coder is not used or if its parameters

are unknown, we instead assume that the number of vectors in each partition

cell is equal and given by M
k

where k is the number of code vectors in the

codebook.

2. For a given codebook vector yi, random vectors are generated as described

above such that they are uniformly distributed over the appropriate poly-

topal region.

3. The preceeding step is repeated for all the codebook vectors. The problem

of generating vectors for the overload region is side-stepped by confining

the problem to a finite region of support that depends on the number of

partitions and their sizes.

In the above approach, we assume that the Euclidean distance metric is used

in generating our training set. Euclidean distance d is defined as

d = (x1 − x2)
T (x1 − x2) (46)

where x1,x2 ∈ Rk×1. In many coders, weighted distance measures are used to

make the VQ a more efficient. A weighted distance measure is given by

d = (x1 − x2)
TW(x1 − x2) (47)

63

where W. A property of a distance measure is that it is always non-negative, i.e.

d = (x1 − x2)
TW(x1 − x2) ≥ 0. (48)

This implies that W has to be positive semidefenite and it can thus be written as

W = RTR = UT ΛT1/2Λ1/2U (49)

where U is a unitary matrix with eigenvectors of W as its columns and is a

diagonal matrix with the eigenvalues of W as its diagonal elements. Consequently,

the weighted distance measure can be written as

d = (x1 − x2)
TRTR(x1 − x2) (50)

which is nothing but the Euclidean distance in the space transformed by the

matrix R. Therefore to synthesize the training set for a VQ designed using a

weighted distance metric like that used in [56] or [26], we need only construct the

training set as above and transform all the synthesized vectors by the matrix RT .

4.2 Theoretical Analysis

In the approach of the previous section, we approximate a pdf within a VQ par-

tition cell as uniform. Here, we justify this choice. In the reverse engineering

problem which motivates this work, we do not know the shape of the underlying

pdf within the codebook partition. Our goal in this section is to characterize the

error incurred when we use the uniform density approximation outlined above in

64

place of the unknown, underlying pdf. Note that this error is equivalent to the

variance of the truncated pdf which describes the source distribution within the

partition.

For a multidimensional pdf over a convex polytopal region, we can claim the

following: (1) the mean vector is composed of the means of the marginal pdfs of

the given multidimensional pdf in all dimension and (2) the variance (distortion

with respect to the centroid) is the sum of the variances of the marginal pdfs.

During VQ design, the partitions are formed such that the distortion in a given

region is minimized. Assuming that the underlying pdf can be represented as a

Gaussian Mixture Model (GMM), and that the number of codebook vectors is

greater than the number of modes in the mixture, we can say that in most cases

the pdf over a VQ partition is denser near the centroid (i.e. the mean). Thus,

we can assume that in most partitions, the marginal density functions are either

unimodal or monotonically increasing or decreasing functions. There could also

be cases where the probability density is large closer to the edges of the polytope,

thereby having marginal densities with minima close to the mean. These cases

would be very rare, however, if we assume a reasonably large codebook size.

Following the above discussion, we can thus characterize the variance (the mean

square distortion in our case) of a multidimensional pdf confined to a polytopal

region by characterizing the variances of the marginals.

For a given VQ codebook, we assume that the underlying pdf is smooth.

65

Consequently, we can further assume that the marginal pdfs are smooth and are

defined over a finite interval [a, b] on the real line. Our problem then becomes one

of comparing the variance of a one dimensional uniform density function to that

of unimodal and monotonic density functions over a fixed interval. Seaman and

Jacobson have independently shown that the variance is maximized by the uni-

form density for a set of unimodal functions (with some constraints)[68][69]. For

the monotonic case, we first consider two examples: (1) a set of linear monotonic

decreasing functions and (2) a set of truncated exponentials with varying conver-

gence rates. For the set of linear monotonic functions, it is easily shown that the

uniform density has the maximum variance. The set of linear monotonic functions

can be defined as

f(x) = (1 + e) − 2ex (51)

over the interval [0,1], where e is a value in the interval [0,1] and when e = 0, the

function is the uniform density function. An example of this function is as shown

in Figure 16. The variance of this function is given by

V ar(x; f(x)) =
1

12
− e2

36
(52)

and therefore

V ar(x; u(x)) =
1

12
≥ V ar(x; f(x)) (53)

where u(x) is the uniform density over the interval [0,1]. This logic can be extended

to any finite interval on the real line. Considering now case (2), the pdf for the

66

set of truncated exponentials can be written as

f(x) =

(

b

(1 − exp(−b))

)

exp(−bx) (54)

where the parameter b controls the rate of convergence of the pdf over the interval

[0,1]. The interval over [0,1] is taken simply for convenience and can be easily

extended to any other interval on the real line. Figure 17 shows a plot of the

variance of the truncated exponential with respect to the parameter b. From this

plot, we can see that the variance of the uniform pdf (the broken line in the figure)

upper bounds only a certain subset of the truncated exponentials – specifically,

for 0.05 < b < 4.5. Nevertheless, we can still say that the variance of a one di-

mensional uniform density function (over a fixed interval) forms an upper bound

with respect to the variances of a large set of unimodal and monotonic density

functions defined over a common finite interval. Extending this to the multidi-

mensional case using the marginal density argument of the previous paragraph,

we can further say that the uniform density over a fixed polytopal region is likely

to have higher variances and therefore form an upper bound on the distortion

relative to that incurred using the true (unknown) pdf.

In the previous paragraphs, we showed that if the distortion computed using

uniform density approximation over each partition provides an upper bound rel-

ative to the distortion in some common situations. Thus, the true rate distortion

performance is likely to be better than the operational R-D performance esti-

67

1 - e

1

1 + e

10

f(x)

Figure 16: Plot of linear monotonically decreasing function. The parameter e

controls the slope of the pdf.

mated for the synthesized training set. It has been shown that as the number of

partitions is increased, the probability density in each partition approaches that

of the uniform density function [70]. This implies that as the number of partitions

is increased (i.e., the size of the codebook is increased), the upper bound on the

distortion converges to the distortion integral of the true underlying pdf [71][72].

The rate at which this convergence occurs can be demonstrated as follows. Let

f(x) be a mixture of k Gaussian densities and x ∈ R
n. If we design a VQ for

f(x) assuming negligible overload distortion and k codebook vectors, an optimal

VQ would very likely place a codebook vector at the mean of each Gaussian in

the GMM. Each VQ cell is then a convex polytope with the mean of a Gaussian

68

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

parameter b

V
ar

ia
nc

e

Figure 17: Plot of variance of the truncated exponential with respect to the rate

parameter b. The broken line is the variance of a uniform pdf over the same

interval.

69

element as its centroid. If we increase the number of codebook vectors, the sizes

of the VQ cells at the modes of the Gaussian components decrease and new VQ

cells are introduced covering the tails of the Gaussian components. Our goal is to

show that if the number of VQ cells is increased then the shape of the conditional

pdf over each partition rapidly approaches that of the uniform density. To do this,

we first show that the conditional pdf on a VQ cell centered at the mode rapidly

converges to the uniform density. Consider a one dimensional Gaussian pdf with

zero mean and variance σ2 truncated in the interval [-1, 1] and given by

g(x) =
1

p
√

2πσ2
exp

(−x2

2σ2

)

(55)

where p is a normalizing factor ensuring that
∫ 1

−1
g(x)dx = 1. If h(x) is a uniform

pdf over the interval [-1,1], then the mean square error (MSE) between h(x) and

g(x) is given by

d =

∫ 1

−1

(g(x) − h(x))2dx =

∫ 1

−1

(g2(x) + h2(x) − 2g(x)h(x))dx (56)

which is found to be equivalent to

d =
erf

(

1
σ

)

2
[

erf
(

1√
2σ2

)] (57)

where the erf function is the Gaussian error function. Therefore, d is a monoton-

ically decreasing function with respect to σ. A plot of d versus the standard de-

viation σ is shown in Figure 18. We see from the plot that as the variance is

increased, the pdf over the fixed interval rapidly converges to that of the uniform

70

0 5 10 15 20 25 30 35 40 45 50
0

0.002

0.004

0.006

0.008

0.01

0.012

Variance

D
is

to
rt

io
n

d

Figure 18: Plot of the mean square error between a truncated Gaussian and a

uniform pdf over a fixed σ2.

density. This analysis extends directly to multiple dimensions as follows. Let p(x)

be a truncated Gaussian within a polytope V, with mean 0 and covariance matrix

R for x ∈ R
n. Its density is thus given by

p(x) =
exp

(

−xT Rx

2

)

∫

V
exp

(

−yT Ry

2

)

dy
(58)

The covariance matrix is a positive definite matrix, hence we can represent it in

its spectral form as

R = UTΛU (59)

where U is a matrix with the eigenvectors of R as its columns and the diagonal

matrix Λ contains the eigenvalues of R. Now, by rotating the coordinates of

71

the space such that the eigenvectors align with the coordinate axes, the pdf will

be separable, and the diagonal elements of Λ can be viewed as the variances of

the Gaussian pdfs along each coordinate axis. Clearly, as the eigenvalues of R

increase, R−1 = UTΛ−1U converges to a matrix with all its elements equal to

zero. This implies that in the limit as the eigenvalues go to infinity, the pdf

described in (58) goes to

p(x) =
1

∫

V
dy

= h(x) (60)

which is the uniform distribution over the polytope V . Note that increasing the

variance of the truncated Gaussian is completely analogous to reducing the size of

the region of support while keeping variance constant. This is what occurs when

the number of VQ partitions is increased.

4.3 Smoothed Training Set Synthesis

For a moderate to large codebook size N , the rate-distortion curves for the synthe-

sized codebooks converge rapidly to those of the true codebooks with increasing

N . For smaller values of N , however, a training set corresponding to a smooth

PDF approximation should provide better performance. Such a training set can

be synthesized with only small changes to proposed approach. The specific steps

are as follows:

1. From the original VQ codebook, we synthesize a training set as in Section

72

3.2. This results in a training set that has been implicitly generated by a

piecewise uniform density model.

2. To smooth the underlying piecewise uniform PDF, we use a Parzen’s window

function; specifically, a Gaussian window given by:

ϕ(x) =
1√
2π

exp

(−xT Rx

2

)

(61)

3. To generate a training set that has a smoothed pdf we take the synthesized

training set as in step 1, say Y = {y1,y2, . . . ,yM}, and synthesize new

training set vectors X = {x1,x2, . . . ,xM} distributed according to a PDF

given by

xi ∼ ϕ(x) =
1√
2π

exp

(−(x − yi)
TR(x − yi)

2h

)

(62)

where h is a smoothing factor – the larger the value of h, the smoother the

estimated PDF. While smoothing does not add a lot of computational complexity

to training set synthesis, it does necessitate the generation of larger training sets

in order to accurately represent the smooth underlying PDF.

4.4 Reverse Engineering TWIN-VQ

As detailed in chapter 3, the Twin VQ algorithm uses vector interleaving and

two-channel conjugate codebooks. Thus, to obtain a training set representative of

the MDCT coefficients, we need to first obtain a training set that represents the

73

Index Gen.

Codebook 1

Index Gen.

Codebook 2

Vector

Synthesizer

Vector

Synthesizer

+ Interleaved

Vectors

Deinter-

leaving
.

.

.

Interleaved

Vectors Synthesized

MDCT Spectrum

Figure 19: MDCT frame training set synthesis.

two conjugate VQs. The training sets for the conjugate VQs are then combined

randomly to form the interleaved vectors, and these interleaved vectors, are dein-

terleaved to obtain a frame of MDCT coefficients. The two channel conjugate VQ

used in the MPEG-4 Twin VQ has two codebooks of 174 codebook vectors each.

Generating a training set and obtaining all the possible combinations of the train-

ing set vectors prior to deinterleaving poses a major challenge. As an example if we

directly combine the conjugate VQ codebooks there are about 174× 174 different

combinations possible – too large a number for the synthesis procedure outlined in

the previous section to handle efficiently. To overcome this difficulty, we generate

the MDCT coefficient vector one at a time as discussed in the paragraphs that

follow.

74

The block diagram as shown in Figure 19 illustrates the procedure proposed

to obtain training set samples for the flattened MDCT spectrum. A random

number generator first selects an index for each of the two conjugate codebooks,

useing the probability information obtained from the Huffman coding tool. These

indices are then passed to a vector synthesis block which generates random vectors,

uniformly distributed over the quantization bin of the specified codebook vector.

Combining the vectors generated for each conjugate codebook, we obtain a single

interleaved vector. Since Twin VQ decomposes the 1024 size MDCT frame into 64

different interleaved subvectors, we must generate 64 different interleaved vectors

as described above and then deinterleave them to obtain a single training set vector

for the MDCT frame. This technique is statistically equivalent to the training set

synthesis procedure mentioned in the previous section, but it saves memory space

and computation by generating one MDCT spectrum vector at a time.

4.5 Experimental Verification

4.5.1 Operational Rate Distortion Curves

In this section, we present some numerical examples to demonstrate the perfor-

mance of the proposed training set synthesis method. In the following experi-

ments, we evaluate the rate distortion curves for different scenarios, comparing

the original and synthesized VQs. We assume here that the underlying source pdfs

are either Gaussian pdfs or mixtures of Gaussians, and we note that the distortion

75

integrals are calculated using the spherical invariance property of the Gaussian

and a Monte Carlo technique proposed by Deak [73][74]. Figure 20 shows the op-

erational rate-distortion (RD) curve assuming that the original source training set

is generated by a symmetric 3-Dimensional Gaussian pdf. Here, the new training

set is synthesized assuming that the probability of each VQ codebook vector is

known (i.e. that we have access to the entropy codes). From the figure, we see that

the distortion decreases with the bit-rate and that the curves for the synthesized

and original designed VQ are very close together, beginning to converge at higher

rates. To illustrate this more precisely, we compare in Figure 21 the two opera-

tional rate-distortion curves from Figure 20 by taking their ratio. We also plot

the 95% confidence intervals. From this plot, we see that the ratio is significantly

greater than one for small codebook sizes, indicating that the synthesized VQ is

greatly inferior to the directly designed VQ, but we note that it tends to unity as

the codebook size is increased, illustrating the expected asymptotic convergence.

The same experiment is repeated for a 2-dimensional Gaussian Mixture Model

with three Gaussian components, and the ratio of the RD curves for the original

versus the synthesized codebooks is plotted in Figure 22. In this case, however,

we plot ratios for both the smoothed and unsmoothed synthesized codebooks. As

expected, smoothed training set synthesis performs considerably better than un-

smoothed synthesis for smaller codebook sizes, but it performs equivalently once

the codebook size exceeds 60.

76

10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Synthesized TS
Original TS

Figure 20: Plot of Rate (VQ codebook size) vs. the Distortion in Mean Squared

Error for a symmetric Gaussian pdf assuming prior knowledge of the probabilities

of VQ codebook vectors.

77

The examples above have illustrated both the utility of training set synthesis

for VQ redesign and the speed with which it converges to the optimal solution as

the codebook size increases. Our real interest, however, is in redesigning VQs for

subspaces or transformed spaces of the original signal space – e.g., repartitioning it

to describe the different subspaces formed by grouping together different elements

of the original vector space. Once we have the synthesized training set, all we have

to do to design the new subspace VQs is transform each of the training vectors

into the appropriate space. This is much easier than directly transforming a PDF.

To illustrate our approach, we perform two experiments. In the first experiment,

we redesign a vector quantizer for a linearly transformed (non orthogonal) space

while in the second, we create separate VQs for subspaces of the original vector

space.

4.5.2 Transformed Space Vector Quantization

The contourlet transform is most commonly applied to images and is used to ef-

ficiently represent the edges within and image that have orientations other than

the horizontal and vertical [75]. This contourlet transformation is implemented

by first performing a pyramidal decomposition, and then applying a directional

filter bank on the high frequency components of the image. In the following ex-

periment we assume that we are already given a VQ-based scheme that encodes

512x512 grayscale images, where each vector is formed by 8x8 pixel blocks. The

78

0 20 40 60 80 100 120
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Rate N

D
is

to
rt

io
n

B
ia

s

Figure 21: Plot of the rate (VQ codebook size) versus the ratio of distortion in

mean squared error for a symmetric Gaussian pdf assuming prior knowledge of

probabilities of VQ codebook vectors.

79

10 20 30 40 50 60 70 80 90 100
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2
Smoothed
Unsmoothed

Figure 22: Plot of the rate (VQ codebook size) versus the ratio of distortion in

mean squared error for a 2 dimensional Gaussian mixture assuming prior knowl-

edge of probabilities of VQ codebook vectors. Both smoothed and unsmoothed

cases are illustrated.

80

VQ is trained from the standard Lena, Barbara and Boats images and contains

256 codevectors. We wish to design a new image compression system that ap-

plies the contourlet transform on 8x8 pixel blocks of the original image and then

uses a VQ to compress the different high frequency directional components. The

simplest way to do this is to form new codebooks by directly transforming the

original codebook. Let us call such a codebook the ’extracted codebook’. As an

alternative, we design new codebooks from the original codebook using the pro-

posed training set synthesis approach. To do this, we first synthesize a training set

from the original codebook, transform the training set using the contourlet trans-

formation, and finally design new codebooks for each of the transform coefficient

vectors.

For the experiment presented here, the contourlet transform is performed us-

ing the Contourlet Toolbox developed by Minh Do [76]. The pyramidal filter bank

and the directional filter banks are implemented using the 5-3 wavelet transform,

and a three stage pyramidal transform is used to decompose the image into three

different frequency subbands (one low and three high frequency subbands). The

three higher frequency bands are further decomposed into 3, 8 and 16 directional

subbands respectively. In the experiment presented here, we consider quantiza-

tion of only the two different directional subbands obtained by doing a directional

decomposition on subband-3. We label these directional subband-1 and direc-

tional subband-2. Note that the collective transform (from pyramidal filtering to

81

Table 1: Comparison performance (in MSE) between VQs designed using the

original training set and the synthesized training set for linearly transformed data.

Directional Optimal Extracted Synthesized Synthesized
Subbands Redisign Codebook Codebook with Codebook without

Probability Probability
Directional 11.32 24.82 16.28 20.92
Subband 1
Directional 9.23 21.20 14.44 20.57
Subband 2

directional decomposition) forms a highly non-orthogonal transform – a case for

which direct codevector transformation is not likely to be effective.

Given a training set, one can design VQs for any desired bit-rate. In this

example, we design each of the new (lower dimensional) codebooks at the same

rate as the original codebook so that the total bit-rates of both codes are the same.

This results in codebooks that contain 256 code vectors each. Table 1 compares

the mean square distortion for the two directional component vectors and four

different cases - optimal redesign using the original training set, new codebooks

that are directly extracted from the original codebook, and training set synthesis

with and without entropy codes. We can see from the table that the synthesized

VQ performs much better than the extracted VQ. Specifically there is 19-34%

reduction in the distortion using the synthesized codebooks versus the directly

extracted codebook vectors.

82

4.5.3 Partitioned Space Vector Quantization

In the next experiment, we design VQs for subspaces formed by repartitioning

the original vector space into lower dimensional subspaces. If x is a vector

such that x ∈ R
n with elements x = [x1, x2, . . . , xn]T , this vector space can

be repartitioned simply by regrouping its element as x1 = [x1, x2, . . . , xl]
T and

x2 = [xl+1, xl+2, . . . , xn]T for some integer l < n. Here, we generate the original

training set distributed as a four dimensional, bimodal Gaussian mixture density.

The location of the modes m1, m2 of each Gaussian density element are given by

m1 = [0000]T and m2 = [2321]T , respectively, and the covariance matrices R1,R2

are given by R1 = I (identity) and

R2 =

1 0.3 0.1 0
0.3 1 0.3 0.1
0.1 0.3 1 0.3
0 0.1 0.3 1

The first two elements of the original four dimensional vector are mapped to sub-

space 1 and the remaining elements to subspace 2. The VQ codebook for the

full space is initially designed from the original training set using the LBG al-

gorithm - we call this codebook the original codebook. The original training set

contains 1000 vectors and the original codebook size is 20 vectors. As in the pre-

vious example, we consider two ways of designing the new codebooks: (1) directly

partition the original codevectors into the required subspaces and (2) using the

proposed approach to synthesize a training set, partitioning the training set into

subspaces and then redesigning the codebooks for the corresponding subspaces.

83

Table 2: Comparison of performance (in MSE) between VQs designed using the

original training set and the synthesized training sets for subspace vectors.

Subspace Optimally Extracted Synthesized Synthesized Smoothed
Redesigned Codebook With Without synthesis

Probability Probability with
Probability

Subspace 1 0.30 0.40 0.33 0.36 0.34
Subspace 2 0.23 0.39 0.27 0.33 0.25

We consider here both smoothed and unsmoothed training set synthesis, and we

synthesize a training set containing 1000 vectors from the original codebook. After

repartitioning each element of the training set into two two-dimensional vectors,

new codebooks are designed for each subspace from these two synthesized sets.

Finally, the codebook for each subspace contains 20 codevectors, maintaining the

original code rate and allowing us to easily compare this system with that formed

by directly partitioning the original codebook vectors into subvectors (labeled ’ex-

tracted codebook’ in Table 2). The MSE performances are compared in Table 2.

Studying the table, we note that the gain in performance achieved using training

set synthesis instead of codebook extraction is significant – 9.5% to 16% for sub-

space 1 and 16.5% to 32% for subspace 2, depending upon the availability of code

vector probabilities. Comparing smoothed and unsmoothed synthesis, we see that

their relative mean squared errors are essentially the same: smoothing performs

slightly worse on Subspace 1 and slightly better on Subspace 2.

We note, however, that for the results of both experiments, the performance

84

of training set synthesis is far below that achieved when the VQ is optimally

redesigned using the original training set. With codevector probabilities, the

average increase in MSE for the contourlet example is about 50% while for spatial

partitioning it is about 19%. While these numbers may seem high, it is important

to note that optimal redesign requires information (e.g. the original training

set) which is unavailable to us. We present these comparisons here primarily to

quantify how close the performance of the proposed training set synthesis approach

is to that of the best possible codebook (e.g. to the upper performance bound).

4.5.4 Performance of training set synthesis within the TWIN-VQ frame-

work

In our final experiment, our primary goal is to evaluate the performance of training

set synthesis for the redesigned TWIN-VQ – we are not considering here the

problem of scalable compression which will be addressed in the next chapter.

Thus, for this experiment, we fix the output bitrate of the encoder to 16 kb/s.

Since we have found that the most perceptually significant information lies within

the first 18 critical bands or bark levels when coding at this bit rate, we design

only 18 residual VQs. Each of the VQs must therefore operate at a rate of 0.5

bits per sample.

These different VQs are designed from two different training sets: (1) the

training set obtained from randomly chosen audio sequences and (2) the training

85

Table 3: Sequences used for the TWIN-VQ experiment.

Sequence No. Sequence Genre Duration
Name (seconds)

1 Cliff Richards Rock 20
2 Korn Rock 20
3 Benetar Rock 10
4 Erick Clapton Rock 15
5 Beethoven 9th Classical 20
6 Swan Lake Classical 20
7 Nut Cracker Classical 20
8 Cinderella Classical 20

set synthesized by the method described in section 4.4. Specifically, we compare

training set synthesis to two different training sets obtained from random audio

samples. The audio sequences used for training are listed in Table 3. The first four

are 20s sequences of rock music and the last four are 20s sequences of classical

instrumental music. The first training set is obtained from sequences 1 and 2

and the second training set is obtained from sequences 5 and 6. Finally, the

actual training vectors are obtained by applying an MDCT followed by the 2-

stage TWIN-VQ prediction process using the TWIN-VQ tool of the MPEG-4

audio reference software [20]. The synthesized training set, on the other hand,

is derived from the codebook of the TWIN-VQ MPEG-4 tool as described in

section 4.4. All the three training sets contain 2000, 1024-dimensional vectors

which are partitioned into the different critical bands. The residual VQs for each

critical band are then designed from each of these different training sets and the

remaining of the sequences within each genre (i.e., those not used in the VQ design

86

Table 4: Comparison of performance (in MSE) between TWIN-VQ systems de-

signed using random audio data and synthesized training set from the MPEG-4

standard.

Genre VQ designed VQ designed Synthesized Extracted
from from from Codebook

Seq.1 and 2 Seq. 5 and 6 MPEG-4
TWIN-VQ

Genre 1
(Rock) 0.44 0.83 0.49 0.75

Seq. 3 and 4
Genre 2

(Classical) 0.67 0.53 0.50 0.73
Seq. 7 and 8

process) are encoded.

The weighted mean square error results for the VQs designed from each of

the training sets are as shown in Table 4. The weighting values are calculated

from the LPC spectrum and bark scale spectrum of the sequences being encoded

in the same manner as in the TWIN-VQ encoder. From the first two columns,

we see that the average distortion is much lower when the VQs used to encode

sequences are designed using sequences of the same genre. However, the set of

VQs designed by training set synthesis perform equally well for both the genres

and is 36-69% better compared to the directly designed VQs when the genres are

mismatched. Furthermore, training set synthesis has on the average a 33% lower

MSE compared to direct codebook extraction. Clearly, the training set synthesis

method results in a far more effective VQ over the unknown original training set

87

than the alternatives. In reality, of course, it is subjective audio quality that

really matters in this application. Extensive subjective testing is presented in

subsequent chapters.

88

5 SCALABLE TWIN-VQ CODER

Before we discuss our scalable Twin-VQ coder, we first present two important

tools used in its construction: the modified discrete cosine transform and temporal

noise shaping. The modified discrete cosine transform (MDCT) is used for time-

frequency analysis within Twin-VQ, allowing critical bands to be extracted from

the MDCT spectrum. On the other hand, non-simultaneous coding artifacts like

pre-echo (described in section 5.2) are reduced by using the temporal noise shaping

(TNS) tool.

5.1 Modified Discrete Cosine Transform

Cosine-modulated pseudo quadrature mirror filter banks (PQMF) have been used

to create M-channel filter banks with almost perfect reconstruction properties

[77][78][79]. Cosine modulated filter banks use a single lowpass, finite impulse

response (FIR) prototype filter and modulate it to obtain bandpass filters. The

PQMF banks have some nice properties such as, overall linear phase, uniform

subband widths, low complexity of construction (one FIR filter and modulation)

and critical sampling.

In the PQMF bank derivation, phase distortion is completely eliminated since

by forcing the analysis and synthesis filters to satisfy the mirror image condition,

gk[n] = hk[L − 1 − n], (63)

89

where gk[n] and hk[n] are the analysis and synthesis filters for the kth band.

Adjacent channel aliasing is eliminating by establishing precise frequency domain

positioning of the analysis and synthesis filters Hk(z) and Gk(z), respectively.

After critical sampling, these conditions yield analysis filters given by

hk[n] = 2w[n] cos

(

π

M
(k + 0.5)

(

n − (L − 1)

2

)

+ θk

)

(64)

and synthesis filters given by

gk[n] = 2w[n] cos

(

π

M
(k + 0.5)

(

n − (L − 1)

2

)

− θk

)

(65)

where

θk = (−1)k π

4

and w[n] corresponds to an L-length, real coefficient, linear phase FIR prototype

lowpass filter, with normalized cutoff frequency π/2M . Thus, the filter bank

design is equivalent to designing the window w[n].

The PQMF filterbank is not perfect reconstruction (PR). It is useful in audio

coding applications to restrict the quantization distortion to specific frequency

bands to a specific instance in time. Malvar and Vaidyanathan have independently

shown that it is possible to have PR cosine modulated filterbanks [77][78]. This is

done by appropriately constraining the synthesis filters gk[n], for 0 ≤ k ≤ M − 1.

Here, we are interested in the MDCT which is a cosine modulated filterbank with

L = 2M , where L is the length of the prototype filter and M is the number of

90

analysis filters. The MDCT analysis filter impulse responses are given by

hk[n] = w[n]

√

2

M
cos

(

(2n + M + 1)(2k + 1)π

4M

)

(66)

and the synthesis filters are obtained by time reversing the analysis filters, i.e,

gk[n] = hk[2M − 1 − n] (67)

this is done so as to satisfy the overall linear phase constraint. While the above

equations give the impulse responses of the analysis and synthesis filters for the

MDCT, it is more typical to implement this transformation in a block form.

The MDCT analysis filterbank is implemented using a block transform of

length 2M samples and is advanced by M samples. This implies that two adjacent

blocks have an overlap of M samples (50%). Thus, the MDCT basis functions

extend across two blocks in time, thereby virtually eliminating blocking artifacts.

The MDCT is a critically sampled tranform, i.e., with a 50% overlap only M

coefficients are created by the forward transform for each 2M-sample input block.

Given an input block x[n], the transform coefficients X[k], for 0 ≤ k ≤ M − 1 are

given by

X[k] =

2M−1
∑

n=0

x[n]hk[n]. (68)

The MDCT analysis performs a series of inner products between the M analysis

filter impulse responses hk[n] and the input x[n]. On the other hand, the inverse

MDCT obtains a reconstruction by computing a sum of basis vectors weighted

91

by the transform coefficients from two blocks. The first M-samples of the kth

basis vectors, hk[n], for 0 ≤ n ≤ M − 1, are weighted by the kth coefficient of

the current block, X[k]. Simultaneously, the second M-samples of the kth basis

vector, hk[n], for M ≤ n ≤ 2M − 1, are weighted by the kth coefficient of the

previous block X ′[k]. Then, the weighted basis vectors are overlapped and added

at each time index n. Note that the extended basis functions require the inverse

transformation to contain an M-sample memory in order to retain the previous

set of coefficients. Thus, the reconstructed samples x[n], for 0 ≤ n ≤ M − 1, are

obtained by the inverse MDCT, defined as

x[n] =
M−1
∑

k=0

(X[k]hk[n] + X ′[k]hk[n + M]) . (69)

The analysis and synthesis filters for the MDCT are derived from a prototype

FIR filter w[n]. The generalized PR conditions when applied to the prototype

filter yields the constraints

w[2M − 1 − n] = w[n], and

w2[n] + w2[n + M] = 1,
(70)

for sample indexes 0 ≤ n ≤ M − 1. Several windows have been proposed

[80][81][82][83]. The most commonly used window function for audio is the sine

window, defined as

w[n] = sin

[(

n +
1

2

)

π

2M

]

(71)

for 0 ≤ n ≤ M − 1. This window is used in standards like MPEG-1, Layer 3

(MP3), MPEG-4 AAC, and Twin-VQ.

92

5.2 Temporal Noise Shaping

Pre-echo distortion arises in transform coding systems which use perceptual coding

rules. Pre-echoes occur when a signal with a sharp attack begins near the end of

a transform block immediately following a region of low energy. Since masking

thresholds are calculated and applied in the frequency domain, the quantization

noise that is introduced in the frequency domain spreads evenly throughout the

reconstructed block due to time-frequency uncertainty. This results in unmasked

noise throughout the low energy region preceding the signal attack at the decoder.

Temporal noise shaping is a frequency domain technique to counter the effect

of pre-echo distortion [84]. A linear prediction (LP) is applied across the frequency

(rather than time). The parameters of a spectral LP filter A(z) are estimated us-

ing the Levinson-Durbin algorithm as applied to the spectral coefficients X(k).

The prediction residual e(k) is quantized, encoded and transmitted to the receiv-

ing end as side information. Because the convolution operation associated with

the spectral domain prediction is a multiplication in the time domain, the TNS

separates the time domain signal into a flat excitation signal and a multiplicative

envelope corresponding to A(z). This envelope is then used to shape the quanti-

zation noise introduced at the decoder so that it follows the shape of the signal’s

temporal power lever.

93

5.3 Scalable TWIN-VQ

The TWIN-VQ algorithm quantizes the flattened MDCT spectrum using inter-

leave vector quantization and not the critical band specific quantization that would

be required to achieve fidelity layering. To obtain psychoacoustic scalability within

the TWIN-VQ framework, we modify the quantization and coding part as follows.

Note that all of the steps of TWIN-VQ prior to quantization of the MDCT spec-

trum are retained. The flattened MDCT spectrum is divided into 27 sub vectors

corresponding to the different critical bands of human hearing, with the size of

each subvector and its corresponding frequency range shown in Table 5. These

sub vectors are then quantized separately using the two-stage weighted vector

quantizer shown in Figure 23, with the VQs being designed using the training

set synthesis method introduced Chapter 4. For higher critical bands, the final

residue signal is further encoded using a scalable lattice quantizer as described in

the next section.

The residual VQ shown in Figure 23 is a two stage weighted VQ, and in each

stage a two-channel conjugate VQ structure is used. The same weighting coeffi-

cients are used for both stages of the quantizer. The quantizer can be described

by the unions two conjugate codebooks, y = y1∪y2 and z = z1∪z2 and is defined

as

Q(x) =

(

y1i + y2j

2

)

+

(

z1k + z2l

2

)

(72)

94

Table 5: The size of the subband vectors per critical band and corresponding

frequency range in Hz, for sampling frequency of 44.1kHz.

Critical Number of Frequency Range
Band Coefficients (Hz)

1 4 0-86
2 4 86-172
3 4 172-258
4 4 258-344
5 4 344-430
6 4 430-516
7 4 516-603
8 4 603-689
9 8 0.69k-0.86k

10 8 0.86k-1.0k
11 8 1.0k-1.2k
12 8 1.2k-1.4k
13 16 1.4k-1.7k
14 16 1.7k-2.1k
15 16 2.1k-2.4k
16 16 2.4k-2.7k
17 32 2.7k-3.4k
18 32 3.4k-4.1k
19 32 4.1k-4.8k
20 32 4.8k-5.5k
21 64 5.5k-6.9k
22 64 6.9k-8.3k
23 64 8.3k-9.6k
24 64 9.6k-11k
25 128 11k-13.8k
26 128 13.8k-16.5k
27 256 16.5k-22k

95

+VQ VQ
-1

+VQ VQ
-1

First Stage

VQ Indices

Second Stage

VQ Indices

+

-

+

-

Residual

Signal

Input

Signal

Lattice

 VQ

Lattice VQ

Indices

Residual

Signal

Figure 23: Two stage VQ coder followed by a lattice quantizer to generate layers

of fidelity within a critical frequency band

where Q(x) is the reconstruction value of vector x, and i, j, k and l are indices of

the codebook vectors that minimize

d2 =

[(

y1i + y2j

2

)

+

(

z1k + z2l

2

)]T

W

[(

y1i + y2j

2

)

+

(

z1k + z2l

2

)]

(73)

where W is a diagonal matrix containing the perceptual weighting coefficients.

Note that for a two channel conjugate VQ, the reconstructed vector is represented

by two codebooks. Even if only one of the codebook indices is available we can

reconstruct the input signal but with reduced fidelity. Thus, a two stage residual

quantizer can be viewed as having four layers of fidelity.

Perceptually transparent encoding is done by exploiting the various masking

properties of the human ear, specifically the absolute threshold of hearing, si-

multaneous masking, and temporal masking as discussed in depth in Chapter 2.

TWIN-VQ exploits absolute threshold of hearing and simultaneous masking by us-

96

ing the weighted VQ; our scalable TWIN-VQ does the same with both VQ stages

using the same weighted distortion metric. In the original TWIN-VQ framework,

forward masking issues are addressed by switching between multiple frame sizes.

In our case that poses a problem since handling vectors of varying sizes would

make scalability very difficult to achieve. We solve this problem by using tempo-

ral noise shaping as discussed in section 5.2.

The encoder described above quantizes each critical band with different lev-

els of refinement; the decoder achieves fidelity scalability by reconstructing the

vectors in a progressive manner. For each decoded bit rate, the bits representing

the quantized coefficients are sent in a manner which maximizes the perceived

improvement in audio quality, creating a perceptually layered bit stream. Note,

however, that there are many ways of creating fidelity scalability using the differ-

ent indices generated by the encoder, some of which are better than others.

The starting point for the scalable TWIN-VQ described above is the TWIN-

VQ tool set included as part of MPEG-4 natural audio coder reference software.

First, a fixed-length block of the temporal signal is transformed by the MDCT to

produce a 1024 length coefficient vector. Two-stage flattening is performed using

the LPC and the bark scale envelope, and the flattened MDCT coefficients are

then split into subvectors corresponding to the different critical bands of human

hearing as discussed in chapter 2. These subvectors are then quantized using

a two-stage weighted VQ followed by a scalable lattice VQ. Thus, each critical

97

band is encoded by layers of indices, where each index layer signifies a level of

refinement.

5.4 Lattice Quantization of the Residuals

To produce further layers of fidelity, we apply a 3 layer residual lattice quantizer

to the residual signal resulting from the two previous stages of conventional vector

quantization. Separate lattice quantizers are applied to the residual in each critical

band in order to retain the perceptually scalable structure of the quantizer indices.

Unfortunately, it is well known that residual vector quantization becomes un-

productive beyond two or three stages [21]. In our case, however, we must use

another layer of VQ simply because we have so few bits available. Looking at the

statistics of the final-stage residual samples, we find that they have a Laplacian-

like distribution. The correlation matrix R, calculated from the residues gen-

erated by the synthesized training set for the different subbands, indicates that

the individual residual samples are largely uncorrelated. Thus, we assume here a

separable multivariate Laplacian distribution underlying the residual vectors. For

an n-dimensional vector x = [x1, x2, . . . , xn] of i.i.d Laplacian random variables xi

with zero mean and standard deviation σ, the probability density function (pdf)

is given by

f(x) =
1

(
√

2σ)n
exp

(

−
√

2

σ

n
∑

i=1

|xi|
)

. (74)

Many approaches have been used to quantize vectors generated by a Laplacian

98

pdf including pyramid vector quantization and piecewise uniform quantization

[85][86]. In this work, we use a simple companding-based quantization scheme.

Specifically, we apply a simple pdf transformation to map the Laplacian residual

vector to one with a uniform distribution on the unit hypercube [0, 1]n where n is

the dimension of the input vector. The mapping is separable over each dimension

of the input vector since (6) is separable, and it is given by:

y =

1
2
exp

(√
2x
σ

)

for −∞ < x < 0

1 − 1
2
exp

(

−
√

2x
σ

)

for 0 ≤ x < ∞.
(75)

The inverse mapping is found by inverting the above function to obtain

x =

{

σ√
2
ln 2y for 0 ≤ y ≤ 0.5

− σ√
2
ln 2(1 − y) for 0.5 ≤ y ≤ 1.

(76)

The vector that results from the mapping of (7) is then quantized using the lattice

VQ.

Lattice-based VQs are generally applied to uniformly distributed sources [87][88][89],

and their structure enables them to have a relatively fast encoding step. Their

encoding speed has also lead to their application to quantizing nonuniformly dis-

tributed random vectors, despite their suboptimality in such cases [85][86]. Here,

our primary interest is in the scalability of the bit generation process.

A lattice denoted by Λ, is a set of vectors defined by

Λ = {x : x = c1a1 + c2a2 + . . . + ckak} (77)

where the ai are basis vectors of the lattice and ci are integers. Thus, a lattice

is a collection of vectors which can be represented as integer combinations of its

99

basis vectors. For the cubic (integer) lattice, the ai are unit vectors orthogonal to

each other. Since all integer combinations are possible, the size of the lattice is,

in general, infinite. The matrix G, composed of the row basis vectors ai of lattice

Λ, is called its generator matrix. The determinant of the lattice Λ is defined as

det Λ =
∣

∣det
(

GGT
)
∣

∣

1

2 (78)

where the superscript T denotes the transpose operation. The determinant of a

lattice uniquely determines the volume of a Voronoi cell of the lattice. It has been

shown that lattices form good representations for uniformly distributed random

vectors. A practical lattice VQ is constructed by truncating the infinite lattice as

(77) and scaling it to get the minimum mean square error for a given bit rate.

To obtain scalability, we use successive stages of lattice quantization. For two

stages, a smooth lattice quantizer Λs and the coarse lattice quantizer Λc can be

defined where

Λs =

{

xs : xs = α

k
∑

i=1

ciai, ci ∈ Z

}

(79)

Λc =

{

xc : xc =
k
∑

i=1

ciai, ci ∈ Z

}

(80)

The smooth lattice is obtained by scaling down the coarse lattice sum by a factor

0 ≤ α ≤ 1. Assuming we have the same number of bits for both stages of the

lattice quantizer, the codevectors will differ by only a scaling factor. In our case

we use the integer lattice Zn where the Voronoi region for each codebook vector

is a hypercube of unit volume. The calculations for the scale factor for successive

100

quantization is simplified because the regions of integration are hypercubes. We

use the techniques derived by Simon and Bosse for estimating the scale factor for

a given bitrate [90]. Note that at a bit rate of 1 bit per sample, using an integer

lattice is equivalent to using bit plane encoding.

101

6 PERCEPTUAL EMBEDDED CODING

To create a scalable coding algorithm that is truly perceptually embedded, one

must carefully consider the problem of ordering the bits produced by successively

quantizing the residues within and between the many critical bands. The basic

situation is illustrated by the block diagram in Figure 24 in which the optimal

layering of the indices Ikj must be determined. There are many ways of ordering

the indices for example, if the ordering (I11, I21, I31, . . .) is used then coarsely

quantized coefficients are first sent in a fidelity progressive manner followed by

coefficient refinements. On the other hand, the ordering (I11, I12, I13, . . .) sends all

the information about the lower frequency critical bands before information about

higher frequency bands. The optimal ordering for perceptual embedding could be

any one of many different orderings. To find this optimal ordering we could use one

of two methods: (1) human subjective testing or (2) objective metrics. Subjective

tests are generally time consuming and are impractical over such a broad range

of audio fidelities; thus, objective metrics would be more appropriate here.

6.1 Objective Metrics

Many objective metrics have been proposed in literature for quantifying the per-

ceptual quality of audio [91][92][93][94]. These objective measurement algorithms

all rely on perceptual models of the human auditory system. Recently, a number

102

VQ1 VQ2 VQ3

I11 I12 I13

Subband 1

VQ1 VQ2 VQ3

I21 I22 I23

Subband 2

.

.

.

VQ1 VQ2 VQ3

In1 In2 In3

Subband n

Subband

Decomp.

Input

MDCT

Spectrum

Figure 24: Block diagram showing the different index layers formed.

of these different metrics have been combined to form an objective measurement

algorithm called PEAQ (perceptual evaluation of audio quality) which has been

adopted by the International Telecommunication Union (ITU) as ITU-R Recom-

mendation BS.1387-1 [95].

The final version of ITU BS.1387 includes two different quality metrics, a low

complexity basic version and a more accurate, advanced version. These metrics

have been optimized and validated for audio that is encoded to near-lossless quality

– in other words, audio that is not significantly impaired. They have not been

validated for audio that has been significantly impaired due very lossy compression

[25]. Thus, these metrics are not appropriate for assessing the quality of audio

that is scalably encoded for for reconstruction over a wide range of bit rates and,

103

consequently, audio fidelities.

6.2 Energy Equalization Approach (EEA)

A new quality assessment method for highly impaired audio was developed re-

cently called the energy equalization approach (EEA) [25]. In this method, quan-

tization artifacts are artificially introduced into the original audio sequence and

compared with the impaired audio. A crude frequency-transform coefficient quan-

tization method, where coefficients with magnitudes above a particular threshold

T are retained and encoded, is used to introduce the impairments to the original

audio sequence. The threshold T is varied until the energy of the truncated orig-

inal audio signal matches that of the reconstructed audio signal. Thus, T serves

as a measure of the impairment in the test signal.

To estimate the threshold, we first calculate the energy in the bandpass spec-

trogram of the impaired signal as follows

e =

N
∑

i=0

bh
∑

j=bl

Simp(i, j)
2 (81)

where Simp is a 2-dimensional matrix containing the spectrogram of the signal

being tested, i indexes the time with N time blocks and j indexes the frequency

between the band limits bl and bh. The modified spectrum Smod is then created

by applying a threshold T to the original spectrum Sori,

Smod(i, j) =

Sori(i, j), if |Sori(i, j)| ≥ T

0, if |Sori(i, j)| < T
. (82)

104

The bandlimited energy of the modified spectrogram is thus

eT =
N
∑

i=0

bh
∑

j=bl

Smod(i, j)
2, (83)

and it is compared to the energy of the impaired spectrogram given by (81).

Now, to match the energies obtained by (81) and (83) an iterative optimization

is performed with respect to T as follows

if eT < ek, then T = T − ∆

if eT > ek, then T = T + ∆
(84)

where ∆ is the step size. The threshold T ∗ resulting from this optimization algo-

rithm equalizes energy given by (81) and (83).

The threshold T ∗ as obtained above gives us a measure of audio impairment,

however, it does not give us a measurement of perceived performance. To estimate

the perceptual comparisons we have to relate the threshold T ∗ to the subjective

results obtained for the corresponding audio sequence. This is done using a linear

least squares approximation method, where the subjective measures are repre-

sented as a weighted sum of estimated threshold values.

6.3 Generalized Objective Metric (GOM)

A more general objective metric (GOM) has been recently developed by Creusere,

et al [96]. This metric uses the model output variables (MOVs) within the ITU

standard and includes EEA as an additional MOV. Each MOV quantifies some

105

perceptual difference between the original audio sequence and the one recon-

structed after compression. The GOM weights and linearly combines the outputs

of a subset of the MOVs that is determined by a hybrid minmax/least-squares

optimization procedure. MUSHRA (Multi Stimulus test with Hidden References

and Anchor) subjective testing protocol, as described in the next chapter, is used

for comparison. The MUSHRA protocol is accurate over a wider range of audio

impairments than previous testing protocols [97].

As noted above, the ITU recommendation BS.1387 does not provide effective

quality metrics over wide ranges of audio fidelity. However, the MOVs used in it

measure fundamental signal qualities that are related to the perception of audio

quality [91][92][93]. The GOM uses a least-squares procedure to find the optimal

linear weighting for each MOV based on human subjective testing. The linear

model used by the GOM to relate the MOVs and the subjective test results is

given by

Aw = p, (85)

where p is a column vector of dimension M × 1 containing the average subjective

scores for M audio sequences. The matrix A is an M × N matrix, where N is

the number of MOVs used. The weight vector w is then determined so that the

least-squares error is minimized by

w = (ATA)−1ATp. (86)

106

where (•)T is the transpose operation and (•)−1 is the matrix inverse. The quality

measurement of an audio sequence is thus given by

q = wTm (87)

where m is a N × 1 vector containing the MOVs calculated for that sequence

comparison.

The least squares solution shown above minimizes the mean square error

(MSE) between the vector p and a vector q of corresponding q values as ob-

tained by evaluating each of the M training sequences using (87). This method

however, is not general and is only optimal within the training set. There is an

incredible diversity of audio sequences (artists, genre, songs, etc.) and creating a

training set representative of all this diversity is not feasible.

To address this issue, the GOM sacrifices performance within the training set

to achieve better performance over a more general set of audio sequences. It

performs a minimax optimization over a subset of MOVs but uses a linear least-

squares to calculate the weights for that particular subset. The cost function

used is the maximum squared error (ME) between the objective metric q and

the corresponding subjective measure p. Minimizing this maximum error is like

evaluating the worst case situation. To make it more robust for sequences outside

the training set, the GOM considers the maximum squared error with holdout

(ME-H). ME-H is calculated by finding the least square weights for the MOVs

107

when holding out the sequence from the training set for which the ME is being

evaluated. This is done for all the sequence in the training set and the largest ME

value is taken as the cost. Thus, in effect the cost is being evaluated outside the

training set and the resulting weights are likely to be more robust.

The minimax algorithm can be summarized as follows:

1. A subset of MOVs is selected

2. The least-squares weight vector is calculated using (86).

3. ME is calculated over the training set as: e = max1≤n≤N(qn − pn)2 where n

indexes the N test sequences while qn and pn are the objective and subjective

metrics, respectively, of the nth audio sequence.

4. Repeat the above steps till all possible subsets of MOVs have been evaluated.

5. Choose the subset of MOVs that minimizes e.

When applied to subjective data obtained from a training set, this optimization

provides better worst-case performance than the conventional linear least-squares

approach. Thus, GOM forms a robust objective metric over the large range of

audio impairments.

6.4 Bit Stream Optimization

The universal objective-quality metric described in the previous section is used

here to find the best ordering of quantizer indices in order to obtain the optimal

perceptual embedding. With respect to this metric, a greedy optimization algo-

108

rithm is used to perceptually layer the indices Ikj, starting from the lowest fidelity

supported up to the highest fidelity. The objective metric compares the original

and the decoded audio sequences, producing a numeric value between 0(worst

possible) and 100(perfect) – the same as is used by the MUSHRA subjective test

standard.

As mentioned above, there are many ways in which the indices could be layered

in the encoded bitstream. We can, however, reduce the size of the optimization

problem by observing a simple pattern: (1) the coarse quantization indices have

to be reconstructed before the fine quantization indices and (2) given extra bits,

one can either use them to refine critical bands already encoded in a coarse way

or to create a coarse representation of a previously un-encoded critical band. If

one represents the indices as a matrix where the rows represent the critical bands

and the columns are the number of refinements for that critical band, then the

optimization algorithm would proceed by layering indices from the upper left hand

corner to the right and downward.

The optimization algorithm is developed as follows.

1. Within a time frame, reconstruct the coarsely encoded N frequency bands

that can be supported by the lowest bitrate allowed.

2. Set Quality Q = 0

3. Obtain the number of bits/frame increment from a lookup table lut

109

4. For i = 0 to i ≤ N

(a) Refine the ith band

(b) Reconstruct the audio and evaluate the quality q

(c) If q > Q, replace Q with q and save index Ikj where k denotes the

critical band and j denotes the bit layer

5. Reconstruct the N + 1th band

6. Evaluate the quality q

7. if q > Q, replace Q with the current quality and save index Ikj

8. Add index Ikj to the layer ordering and bitrate = bitrate + lut(Ikj)

9. Goto step (3) while the bitrate < maximum bitrate

This algorithm gives us a method to obtain an effective layered embedding scheme.

Obviously, it is suboptimal at any given bitrate since the layering fixed by the

lower bit rates may not be optimal at the higher one. Because our goal is efficient

operation over a wide range of bitrates, however this is not a concern.

110

7 EXPERIMENTS AND RESULTS

Seven monoaural sequences, representing a range of music types as listed in Table

6, are used to evaluate the proposed scalable encoding scheme. These sequences

are sampled at 44.1 kHz with 16 bits per sample resolution. For testing of our

scalable compression system, we first encode these sequences at a rate of 128

kb/s and then reconstruct the audio signals at rates of 64, 32, 24, 16 and 8

kb/s (monoaural). For comparison, we generate audio sequences using a suite

of standard compression algorithms, specifically TWIN-VQ, AAC and scalable

AAC-BSAC. At the reconstruction bitrate of 8 kb/s, we compare our algorithm

only to the fixed-rate TWIN-VQ since it is the only standardized algorithm that

can operate at this low-rate. At the rate of 16 kb/s, we compare our algorithm

with both scalable AAC-BSAC (originally compressed at 64 kb/s) and with fixed-

rate TWIN-VQ. Finally, at the higher bitrates of 64 and 32 kb/s we use the AAC

and AAC-BSAC coders for comparison since these exhibit the best performance

in this regime.

The scalable audio coder is designed as follows. At the lowest bitrate of 8

kb/s, only the first 16 critical bands are decoded. Minimum increments of 8

bits/frame can then be added to the bitstream in the optimally scalable manner

as discussed in the previous chapter. For a monoaural audio sequence sampled

at 44.1 kHz, this results in a bitrate resolution of 700 b/s. A lookup table with

111

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Critical Bands

B
its

 p
er

 s
am

pl
e

Figure 25: Bar graph showing the bits/sample allocated by the optimization pro-

gram for a bitrate of 8 kb/s.

the perceptual embedding information, derived from the optimization algorithm

described in the previous chapter, is used to layer the indices generated for each

time frame. Bar graphs of the bit/sample allocated to each critical band by the

optimization process at rates ranging from 8 – 64 kb/s is as shown in Figures 25

to 28

Human subjective testing over the different bit rates supported by our codec is

performed using the state-of-the art MUSHRA (Multi Stimulus test with Hidden

Reference and Anchor) testing protocol [97]. In the MUSHRA test method, a

high quality reference signal is used and the systems under test are allowed to

introduce significant impairments. The set of signals in a given trial consists of

112

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Critical Bands

B
its

 p
er

 s
am

pl
e

Figure 26: Bar graph showing the bits/sample allocated by the optimization pro-

gram for a bitrate of 16 kb/s.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Critical Bands

B
its

 p
er

 s
am

pl
e

Figure 27: Bar graph showing the bits/sample allocated by the optimization pro-

gram for a bitrate of 24 kb/s.

113

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Critical Bands

B
its

 p
er

 s
am

pl
e

Figure 28: Bar graph showing the bits/sample allocated by the optimization pro-

gram for a bitrate of 32 kb/s.

Table 6: Sequences used in subjective tests.

No. Sequence Name Length (seconds) Type
1 Pat Benetar 9 Rock
2 Excalibur 24 Classical
3 Harpsichord 16 MPEG 4 test sequence
4 Quartet 23 MPEG 4 test sequence
5 Ronnie James Deo 5 Rock
6 Room with a view 15 Opera
7 2001: Space Odyssey 17 Classical

114

all the signals under test plus an uncompressed reference signal for comparison.

A computer-controlled replay system allows the subject to instantaneously switch

between the different sequences. The subjects are required to score the sequences

according to the continuous quality scale (CQS), which scales from 0 to 100 with

0 as the poorest quality and 100 the best. To input the scores, a slider on an

electronic display is used. The following results were obtained from 12 human

test subjects. There were 27 trials per subject and each sequence was evaluated

at 8, 16, 24, 32 and 64 kb/s.

115

Table 7: Mean scores of Scalable TWIN-VQ and fixed rate TWIN-VQ at 8kb/s.

Coder Mean 95% Confidence
Opinion Interval

Mod. TWIN-VQ 43 ±11
TWIN-VQ 44 ±10

Table 8: Mean scores of Scalable TWIN-VQ, AAC-BSAC and fixed rate TWIN-

VQ at 16kb/s.

Coder Mean 95% Confidence
Opinion Interval

Mod. TWIN-VQ 63 ±13
TWIN-VQ 71 ±9
AAC-BSAC 21 ±11

Table 7 compares scalable TWIN-VQ and fixed rate TWIN-VQ at a bit rate

of 8kb/s averaged over all the seven sequences. From this plot, we see that the

modified TWIN-VQ performs almost identically to the fixed rate TWIN-VQ at

this low bitrate. The circle in the plot denotes the mean opinion score of the

reconstructed audio sequences, averaged over all the different sequences and test

subjects while the bars indicate the 95% confidence interval. The plot in Table 8

shows subjective test results for scalable TWIN-VQ, conventional TWIN-VQ and

AAC-BSAC at 16 kb/s. From these tables we can see that the performance of

Table 9: Mean scores of Scalable TWIN-VQ, AAC-BSAC and fixed rate TWIN-

VQ at 16kb/s.

Coder Mean 95% Confidence
Opinion Interval

Mod. TWIN-VQ 67 ±12
AAC-BSAC 36 ±9

116

Table 10: Mean scores for modified TWIN-VQ, AAC and AAC-BSAC at 32 kb/s.

Coder Mean 95% Confidence
Opinion Interval

Mod. TWIN-VQ 76 ±11
AAC-BSAC 84 ±9
AAC 93 ±7

Table 11: Mean scores for modified TWIN-VQ, AAC and AAC-BSAC at 64 kb/s.

Coder Mean 95% Confidence
Opinion Interval

Mod. TWIN-VQ 82 ±13
AAC-BSAC 86 ±10
AAC 98 ±6

the modified TWIN-VQ is close to that of fixed rate TWIN-VQ and 173% better

than the scalable AAC-BSAC at the same bitrate. Table 9 compares the modified

TWIN-VQ to AAC-BSAC at 24 kb/s. Here the modified TWIN-VQ performs

64% better on the average than AAC-BSAC.

At higher bitrates (32 to 64 kb/s) the scalable TWIN-VQ does not perform as

well as AAC or AAC-BSAC. Tables 10 and 11 shows the mean scores and error

bars associated with scalable TWIN-VQ, AAC and AAC-BSAC for a bit-rate of

32 kb/s and 64 kb/s. At these rates the AAC and AAC-BSAC perform 7-10%

and 5-7% better, respectively, than scalable TWIN-VQ. Comparing Figures 8 to

11, we also note that as the bit rate increases, the quality of the audio output by

the scalable TWIN-VQ improves as would that of any well-designed compression

algorithm.

117

8 CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In the work presented here, we have modified the TWIN-VQ audio compression

algorithm as described in the MPEG 4 standard to make it scalable. Subjective

results show that the scalable TWIN-VQ algorithm proposed in this paper per-

forms significantly better than scalable AAC-BSAC at bitrates of 24 kb/s or less

and that it performs equivalently to the fixed rate TWIN-VQ at 8 and 16 kb/s.

We have also presented a method for reverse engineering VQs to synthesize

a training set having statistics similar to those of the original training set. This

synthesized training can then be used to design new VQs as is done for the scalable

coder presented here. Furthermore, this technique can also approximate original

source training sets for multistage systems whose final encoding stage consists of

a VQ; in this case the synthesized training set need only be passed through the

stages of the decoder that come after the inverse quantization stage.

The proposed encoder quantizes each critical band separately and progres-

sively, thus creating a fine-grained scalable bit stream that is explicitly tailored

to the frequency resolution of the human auditory system. By starting with the

TWIN-VQ coding algorithm (long considered the best coding algorithm for non-

speech audio at low bitrates), we ensure that our scalable algorithm is competitive

at these low bitrates.

118

The major contributions of this work can be highlighted as follows:

1. We have developed a general procedure for reverse engineering vector quan-

tizers and have used it to redesign the TWIN-VQ codebook for our new

scalable coder.

2. We have developed a scalable audio coder that combines critical band-

specific residual and lattice VQs to generate a fine-grained, layered bitstream

specifically tailored to the frequency resolution of human auditory system.

3. We have also determined the optimal layering of the scalable bitstream using

objective metrics developed to evaluate audio quality.

4. We have performed human subjective testing to rigorously quantify the per-

formance of our scalable algorithm.

8.2 Future Work

In future work, we hope by perceptually optimizing the quantization and fidelity

layering that we can create a scalable algorithm whose performance is at least

equal (if not superior) to competing algorithms, both scalable and nonscalable,

over a much wider range of operating bit-rates.

In addition, our scalable algorithm could be used as the basis for a joint source-

channel optimized compression system. Scalability is useful since it allows the

119

ratio of source bits to error protection bits to be dynamically optimized to chang-

ing channel conditions. In addition, for transmission channels with fluctuating

channel capacities one can use a perceptually scalable bit stream to seamlessly

transition between different channel rates. Finally, one might also use the pro-

posed coder to construct file formats that facilitate more efficient transmission of

audio over heterogenous networks having differing capacities, transfer protocols

and failure modes.

In the coding algorithm developed here, the perceptual optimal layering is

fixed for each frame at a given bitrate. It might improve the performance if we

could dynamically change the layering within each time frame to optimize the

perceived audio quality. This would require the transmission of side information

which could, if not properly handled, adversely affect coding performance, but

such an approach could also facilitate more seamless quality transitions as the

operating bit rate is dynamically adapted in real applications.

120

APPENDIX

Matlab codes for redesigning VQ

1. Matlab code for reverse engineering a given VQ. The following program gener-

ates a training set given a codebook.

function ts = tsynth(c,N,n)

%---

% Program to synthezie a trainig set from the VQ codebook

% Inputs: c - VQ codebook

% N - Number of vectors/ codebook vector

% n - nth distance measure

%---

[x,y] = size(c);

ts = zeros(x,0);

d = zeros(y,1);

count = 1;

ts = zeros(x,sum(N));

for i=1:y

for j=1:y

d(j) = sqrt((c(:,i)-c(:,j))’*(c(:,i)-c(:,j)));

end

d = sort(d);

dmax = d(n);

t = zeros(x,N(i));

countn = 0;

while countn~=N(i)

rv = c(:,i)+ dmax*(rand(x,1)-0.5*ones(x,1));

%rv = c(:,i)+ sqrt(dmax)*randn(x,1);

for j=1:y

drv(j) = sqrt((rv-c(:,j))’*(rv-c(:,j)));

end

[drvmin,index] = min(drv);

if index == i

countn = countn+1;

121

t(:,countn) = rv;

end

end

ts(:,count:count+N(i)-1) = t;

count = count+N(i);

end

2. Program to synthesize the MDCT spectrum from conjugate codebooks.

function ts = mdct_synth(c1,c2,N,n)

%---

% Program to synthezie a trainig vector for a 1024 point

% MDCT spectrum

% Inputs: c1 - Conjugate codebook 1

% c2 - Conjugate codebook 2

% n - nth distance measure

% k - number of interleaved vectors

%---

[x,y] = size(c1);

ts = zeros(1024,1);

d = zeros(y,1);

count = 1;

for j=1:y

d(j) = sqrt((c1(:,i)-c1(:,j))’*(c1(:,i)-c1(:,j)));

end

d = sort(d);

dmax = d(n);

%--

% Number of code vector elemtents to be read

%--

cn = 1024/k;

t = zeros(cn,k);

%-----------------------------

% Synthesizing the subvectors

%-----------------------------

for i = 1:k

dummy = randperm(y);

index1 = dummy(1);

122

index2 = dummy(2);

rv1 = c1(1:cn,index1)+ dmax*(rand(cn,1)-0.5*ones(cn,1));

rv2 = c2(1:cn,index2)+ dmax*(rand(cn,1)-0.5*ones(cn,1));

rv = (rv1+rv2)/2;

t(:,i) = rv;

end

%--------------------------

% Interleaving the vectors

%--------------------------

for i=1:x

for j=1:y

ts(count) = t(i,j);

count = count+1;

end

end

3. Program to design a VQ from a training set

function [c,N] = lloyd_lbg(ts,inc,tol)

%---

% Generalised Lloyd algorithm

% [new codebook] =

% lloyd_demo(training set, initial cb, tolerance);

%---

%------------

% Initialize

%------------

c = zeros(size(inc));

N = zeros(length(inc),1);

%-------------

% Distortions

%-------------

D_v = zeros(length(N),1); % Distortion in each cluster

D_t = inf; % Total Distortion

D_n = 10000000;

%-----------------

% Lloyd iteration

%-----------------

123

while abs(D_t - D_n) > tol | D_t - D_n < 0

D_t = D_n;

%--------

% Encode

%--------

for i=1:length(ts)

Di = 0; % Distortion for encoding

Dj = inf;

for j=1:length(inc)

Di = (ts(:,i)-inc(:,j))’*(ts(:,i)-inc(:,j));

if Dj>Di

index = j;

Dj = Di;

end

end

% Nearest Neighbours

c(:,index) = c(:,index) + ts(:,i);

N(index) = N(index)+1;

D_v(index) = D_v(index)+ Dj;

end

%----------------------

% Empty Cell Condition

%----------------------

if min(N) == 0

flag = 1;

[v,u] = max(N);

blah = inc(:,u);

for k = 1:length(inc)

if N(k)==0

N(k) = 1;

c(:,k) = blah + randn(size(blah));

end

end

end

[len,wid] = size(inc);

for w = 1:len

c(w,:) = c(w,:)./N’;

end

inc = c;

in = N;

D_n = sum(D_v);

124

c = zeros(size(c));

N = zeros(size(N));

D_v = zeros(size(D_v));

end

c = inc;

N = in;

4. A sample program to plot the rate distortion curves for the synthesized and

original training sets

clear;clc;close all;

%---

% Program to find the rate distortion for the synthesized VQs

%---

N = 10:10:100;

its = 4*randn(2,400);

Do = zeros(length(N));

Dt = zeros(length(N));

for i = 1:length(N)

[c,prob] = lloyd_lbg(its,randn(2,N(i)),0.00001);

ts_synth = tsynth(c,prob,3);

[c_rv,prob_r] = lloyd_lbg(ts_synth,randn(2,N(i)),0.00001);

[blah,Do(i)] = vq_enc(4*randn(2,1000),c);

[blah,Dt(i)] = vq_enc(4*randn(2,1000),c_rv);

end

plot(N,Do,’ro-’); hold on;

plot(N,Dt,’bx--’); hodl off; grid on;

title(’Rate Distortion Comparison for

Original and Synthesiszed VQs’);

xlabel(’Rate N’);

ylabel(’Average Distortion’);

125

C programs to implement the TWIN-VQ algorithm

1. The following C function deinterleaves the input spectrum, perceptual weights.

void ntt_div_vec(

int nfr, /* Param. : block length*/

int nsf, /* Param. : number of sub frames */

int cb_len, /* Param. : codebook length */

int cb_len0, /* Param.*/

int idiv, /* Param. */

int ndiv, /* Param. : number of interleave division */

double target[], /* Input */

double d_target[], /* Output */

double weight[], /* Input */

double d_weight[], /* Output */

double add_signal[], /* Input */

double d_add_signal[], /* Output */

double perceptual_weight[], /* Input */

double d_perceptual_weight[]) /* Output */

{
/*--- Variables ---*/

int icv, ismp, itmp;

/*--- Parameter settings ---*/

for (icv=0; icv<cb_len; icv++) {
/*--- Set interleave ---*/

if ((icv<cb_len0-1) &&

((ndiv%nsf==0 && nsf>1) || ((ndiv&0x1)==0 && (nsf&0x1)==0)))

itmp = ((idiv + icv) % ndiv) + icv * ndiv;

else itmp = idiv + icv * ndiv;

ismp = itmp / nsf + ((itmp % nsf) * nfr);

/*--- Vector division ---*/

d_target[icv] = target[ismp];

d_weight[icv] = weight[ismp];

d_add_signal[icv] = add_signal[ismp];

d_perceptual_weight[icv] = perceptual_weight[ismp];

}
}

2. Function following function normalizes the MDCT spectrum and calls the pre-

126

and main-selection functions.

void ntt_vq_pn(/* Parameters */

int nfr, /* block length */

int nsf, /* number of sub frames */

int available_bits, /* available bits for VQ */

int n_can, /* number of pre-selection candidates */

double *codev0, /* code book0 */

double *codev1, /* code book1 */

int cb_len_max, /* maximum code vector length */

/* Input */

double target[],

double lpc_spectrum[], /* LPC spectrum */

double bark_env[], /* Bark-scale envelope */

double add_signal[], /* added signal */

double gain[],

double perceptual_weight[],

/* Output */

int index_wvq[])

{
/*--- Variables ---*/

int ismp, isf, idiv, ndiv, top, block_size;

int bits, pol_bits0, pol_bits1, cb_len, cb_len0;

int can_ind0[ntt_N_CAN_MAX], can_ind1[ntt_N_CAN_MAX];

int can_sign0[ntt_N_CAN_MAX], can_sign1[ntt_N_CAN_MAX];

double weight[ntt_T_FR_MAX], d_weight[ntt_CB_LEN_MAX];

double d_add_signal[ntt_CB_LEN_MAX];

double d_target[ntt_CB_LEN_MAX];

double d_perceptual_weight[ntt_CB_LEN_MAX];

/*--- Parameter settings ---*/

block_size = nfr * nsf;

ndiv = (int)((available_bits+ntt_MAXBIT*2-1)/(ntt_MAXBIT*2));

cb_len0 = (int)((block_size + ndiv - 1) / ndiv);

/*--- Make weighting factor ---*/

for (isf=0; isf<nsf; isf++){
top = isf * nfr;

127

for (ismp=0; ismp<nfr; ismp++){
weight[ismp+top] =

gain[isf] * bark_env[ismp+top] / lpc_spectrum[ismp+top];

}
}
printf("Number of ivisions = %d",ndiv);

/*--- Sub-vector division loop ---*/

for (idiv=0; idiv<ndiv; idiv++){
/*--- set codebook lengths and sizes ---*/

cb_len = (int)((block_size + ndiv - 1 - idiv) / ndiv);

bits = (available_bits+ndiv-1-idiv)/ndiv;

pol_bits0 = ((bits+1)/2)-ntt_MAXBIT_SHAPE;

pol_bits1 = (bits/2)-ntt_MAXBIT_SHAPE;

/*--- vector division ---*/

ntt_div_vec(nfr, nsf, cb_len, cb_len0, idiv, ndiv,

target, d_target,

weight, d_weight,

add_signal, d_add_signal,

perceptual_weight, d_perceptual_weight);

/*--- pre selection ---*/

ntt_vq_pre_select(cb_len, cb_len_max, pol_bits0, codev0,

d_target, d_weight, d_add_signal, d_perceptual_weight,

n_can, can_ind0, can_sign0);

ntt_vq_pre_select(cb_len, cb_len_max, pol_bits1, codev1,

d_target, d_weight, d_add_signal, d_perceptual_weight,

n_can, can_ind1, can_sign1);

/*--- main selection ---*/

ntt_vq_main_select(cb_len, cb_len_max,

codev0, codev1,

n_can, n_can,

can_ind0, can_ind1,

can_sign0, can_sign1,

d_target, d_weight, d_add_signal,

d_perceptual_weight,

&index_wvq[idiv], &index_wvq[idiv+ndiv]);

}}

128

3. The following function implements the first part or the pre-selection for the

fast TWIN-VQ encoding technique.

#define OFFSET_GAIN 1.3

void ntt_vq_pre_select(/* Parameters */

int cb_len, /* code book length */

int cb_len_max, /* maximum code vector length */

int pol_bits,

double *codev, /* code book */

/* Input */

double d_target[],

double d_weight[],

double d_add_signal[],

double d_perceptual_weight[],

int n_can,

/* Output */

int can_ind[],

int can_sign[])

{
/*--- Variables ---*/

double xxp, xyp, xxn, xyn;

double recp, recn;

double pw2;

double *p_code;

int icb, ismp;

double max_t[ntt_N_CAN_MAX];

double code_targ_tmp_p, code_targ_tmp_n, dtmp;

double code_targ[ntt_CB_SIZE];

int code_sign[ntt_CB_SIZE];

int i_can, j_can, tb_top, spl_pnt;

/*--- Distance calculation ---*/

for (icb=0; icb<ntt_CB_SIZE; icb++){
xxp=xyp=xxn=xyn = 0.0;

code_targ_tmp_p = code_targ_tmp_n = 0.;

p_code = &(codev[icb*cb_len_max]);

for (ismp=0; ismp<cb_len; ismp++){
pw2 = d_perceptual_weight[ismp] * d_perceptual_weight[ismp];

recp =(d_add_signal[ismp] + p_code[ismp]

129

* d_weight[ismp]) * OFFSET_GAIN;

xxp = recp * recp;

xyp = recp * d_target[ismp];

code_targ_tmp_p +=

pw2 * (4.0 * xyp - xxp);

recn =(d_add_signal[ismp] - p_code[ismp]

* d_weight[ismp]) * OFFSET_GAIN;

xxn = recn * recn;

xyn = recn * d_target[ismp];

code_targ_tmp_n +=

pw2 * (4.0 * xyn - xxn);

}
if ((pol_bits==1) && (code_targ_tmp_n>code_targ_tmp_p)){

code_targ[icb] = code_targ_tmp_n;

code_sign[icb] = 1;

}
else{

code_targ[icb] = code_targ_tmp_p;

code_sign[icb] = 0;

}
}

/*--- Pre-selection search ---*/

if (n_can < ntt_CB_SIZE){
max_t[0] = -1.e30;

can_ind[0] = 0;

tb_top = 0;

for (icb=0; icb<ntt_CB_SIZE; icb++){
dtmp = code_targ[icb];

if (dtmp>max_t[tb_top]){
i_can = tb_top; j_can = 0;

while(i_can>j_can){
spl_pnt = (i_can-j_can)/2 + j_can;

if (max_t[spl_pnt]>dtmp){
j_can = spl_pnt + 1;

}
else{
i_can = spl_pnt;

}
}

130

tb_top = ntt_min(tb_top+1, n_can-1);

for (j_can=tb_top; j_can>i_can; j_can--){
max_t[j_can] = max_t[j_can-1];

can_ind[j_can] = can_ind[j_can-1];

}
max_t[i_can] = dtmp;

can_ind[i_can] = icb;

}
}
/*--- Make output ---*/

for (i_can=0; i_can<n_can; i_can++){
can_sign[i_can] = code_sign[can_ind[i_can]];

}
}
else{
for (i_can=0; i_can<n_can; i_can++){

can_ind[i_can] = i_can;

can_sign[i_can] = code_sign[i_can];

}
}

}

4. The second part or the main-selection part of the fast TWIN-VQ encoding

algorithm.

void ntt_vq_main_select(/* Parameters */

int cb_len, /* code book length */

int cb_len_max, /* maximum code vector length */

double *codev0, /* code book0 */

double *codev1, /* code book1 */

int n_can0,

int n_can1,

int can_ind0[],

int can_ind1[],

int can_sign0[],

int can_sign1[],

/* Input */

double d_target[],

double d_weight[],

131

double d_add_signal[],

double d_perceptual_weight[],

/* Output */

int *index_wvq0,

int *index_wvq1)

{
/*--- Variables ---*/

int ismp, i_can, j_can;

int index0, index1, i_can0, i_can1;

double dist_min, dist;

double *codev0_p, *codev1_p;

double pw2, sign0, sign1, reconst;

/*--- Best codevector search ---*/

dist_min = 1.e100;

for (i_can=0; i_can<n_can0; i_can++){
codev0_p = &(codev0[can_ind0[i_can]*cb_len_max]);

sign0 = 1. - (2. * can_sign0[i_can]);

for (j_can=0; j_can<n_can1; j_can++){
codev1_p = &(codev1[can_ind1[j_can]*cb_len_max]);

sign1 = 1. - (2. * can_sign1[j_can]);

dist = 0.;

for (ismp=0; ismp<cb_len; ismp++){
pw2 = d_perceptual_weight[ismp]

* d_perceptual_weight[ismp];

reconst = d_add_signal[ismp]

+ 0.5 * d_weight[ismp] *

(sign0 * codev0_p[ismp] + sign1 * codev1_p[ismp]);

dist += pw2 * (d_target[ismp] - reconst)

* (d_target[ismp] - reconst);

}
if (dist < dist_min){

dist_min = dist;

i_can0 = i_can;

i_can1 = j_can;

index0 = can_ind0[i_can0];

index1 = can_ind1[i_can1];

}
}

132

}

/*--- Make output indexes ---*/

*index_wvq0 = index0;

*index_wvq1 = index1;

if(can_sign0[i_can0] == 1)

*index_wvq0 += ((0x1)<<(ntt_MAXBIT_SHAPE));

if(can_sign1[i_can1] == 1)

*index_wvq1 += ((0x1)<<(ntt_MAXBIT_SHAPE));

}

5. The main TWIN-VQ quantize program

#include "ntt_conf.h"

#include "ntt_encode.h"

#include "all.h"

void ntt_tf_quantize_spectrum(

double spectrum[], /* Input : spectrum*/

double lpc_spectrum[], /* Input : LPC spectrum*/

double bark_env[], /* Input : Bark-scale envelope*/

double pitch_sequence[], /* Input : periodic peak components*/

double gain[], /* Input : gain factor*/

double perceptual_weight[], /* Input : perceptual weight*/

ntt_INDEX *index) /* In/Out : VQ code indices */

{
/*--- Variables ---*/

int ismp, nfr, nsf, n_can, vq_bits;

double add_signal[ntt_T_FR_MAX];

double *sp_cv0, *sp_cv1;

int cb_len_max;

/*--- Parameter settings ---*/

switch (index->w_type){
case ONLY_LONG_WINDOW:

case LONG_SHORT_WINDOW:

case SHORT_LONG_WINDOW:

case LONG_MEDIUM_WINDOW:

case MEDIUM_LONG_WINDOW:

133

/* available bits */

vq_bits = ntt_VQTOOL_BITS;

/* codebooks */

sp_cv0 = (double *)ntt_codev0;

sp_cv1 = (double *)ntt_codev1;

cb_len_max = ntt_CB_LEN_READ + ntt_CB_LEN_MGN;

/* number of pre-selection candidates */

n_can = ntt_N_CAN;

/* frame size */

nfr = ntt_N_FR;

nsf = ntt_N_SUP;

/* additional signal */

for (ismp=0; ismp<ntt_N_FR*ntt_N_SUP; ismp++){
add_signal[ismp] = pitch_sequence[ismp] / lpc_spectrum[ismp];

}
break;

case ONLY_SHORT_WINDOW:

/* available bits */

vq_bits = ntt_VQTOOL_BITS_S;

/* codebooks */

sp_cv0 = (double *)ntt_codev0s; sp_cv1 = (double *)ntt_codev1s;

cb_len_max = ntt_CB_LEN_READ_S + ntt_CB_LEN_MGN;

/* number of pre-selection candidates */

n_can = ntt_N_CAN_S;

/* number of subframes in a frame */

nfr = ntt_N_FR_S;

nsf = ntt_N_SUP * ntt_N_SHRT;

/* additional signal */

ntt_zerod(ntt_N_FR*ntt_N_SUP, add_signal);

break;

default:

fprintf(stderr,"ntt_sencode(): %d:

Window mode error", index->w_type);

exit(1);

}

/*--- Vector quantization process ---*/

ntt_vq_pn(nfr, nsf, vq_bits, n_can,

sp_cv0, sp_cv1, cb_len_max,

spectrum, lpc_spectrum, bark_env, add_signal, gain,

134

perceptual_weight,

index->wvq);

}

6. Residual quantization including scalar quantization

void sri_vq_coder(

int cb_len_max,

double *codev0, /*codebook 0*/

double *codev1, /*codebook 1*/

/* Input */

double target[],

double weight[],

double add_signal[],

double perceptual_weight[],

/* Output Index */

int *sri_vq_index)

{
int i,j;

int sri_can_ind0[6], sri_can_ind1[6],

sri_can_sign0[6], sri_can_sign1[6];

int sri_n_bands = 18, cumulant = 0;

int sri_band_size[18] =

{4,4,4,4,4,4,4,4,8,8,8,8,16,16,16,16,32,32};

int mask, index0, index1, pol0, pol1; /* Reconstructing VQ */

/* Residual quantizing */

double delta, sri_temp;

double sri_d_target[32], sri_d_weight[32], sri_d_add_signal[32];

double sri_d_perceptual_weight[32];

double sri_reconst[1024];

for(i=0;i<1024;i++)

sri_reconst[i] = 0.0;

delta = 6000.0/128.0;

mask = (0x1 << ntt_MAXBIT_SHAPE) - 1;

135

/* Split bands and quantize */

for(i=0;i<sri_n_bands;i++)

{
for(j=0;j<sri_band_size[i];j++)

{
sri_d_target[j] = target[cumulant+j];

sri_d_weight[j] = weight[cumulant+j];

sri_d_add_signal[j] = add_signal[cumulant+j];

sri_d_perceptual_weight[j]

= perceptual_weight[cumulant+j];

}

/* Quantize Spectrum */

/* pre-select */

ntt_vq_pre_select(

sri_band_size[i], cb_len_max,

1, codev0, sri_d_target,

sri_d_weight, sri_d_add_signal,

sri_d_perceptual_weight,

6, sri_can_ind0, sri_can_sign0);

ntt_vq_pre_select(

sri_band_size[i], cb_len_max, 1, codev1,

sri_d_target, sri_d_weight, sri_d_add_signal,

sri_d_perceptual_weight,

6, sri_can_ind1, sri_can_sign1);

/* Main Selection */

ntt_vq_main_select(

sri_band_size[i], cb_len_max,

codev0, codev1,6,6,

sri_can_ind0, sri_can_ind1,

sri_can_sign0, sri_can_sign1,

sri_d_target, sri_d_weight,

sri_d_add_signal,

sri_d_perceptual_weight,

sri_vq_index+sri_ind_c,

sri_vq_index+sri_ind_c+1);

/**** Sri Reconstruct ****/

136

index0 =

(sri_vq_index[sri_ind_c]) & mask;

index1 =

(sri_vq_index[sri_ind_c+1]) & mask;

pol0 = 1 - 2*((sri_vq_index[sri_ind_c]

>> (ntt_MAXBIT_SHAPE)) & 0x1);

pol1 = 1 - 2*((sri_vq_index[sri_ind_c+1]

>> (ntt_MAXBIT_SHAPE)) & 0x1);

for(j=0;j<sri_band_size[i];j++)

{
sri_reconst[cumulant+j] =

(pol0*codev0[index0*cb_len_max+j]

+pol1*codev1[index1*cb_len_max+j])*0.5;

}

sri_ind_c = sri_ind_c+2;

cumulant = cumulant+sri_band_size[i];

}
for(i=0;i<1024;i++)

{
sri_temp = ((target[i]-add_signal[i])

/weight[i])-sri_reconst[i];

if(sri_temp < 0)

{
sri_temp = (-1.0)*sri_temp;

if(sri_temp > 6000.0)

sri_temp = 6000.0;

sri_residue[sri_frame_n*1024+i]

= (int) sri_temp/delta;

}
else

{
if(sri_temp > 6000.0)

sri_temp = 6000.0;

sri_residue[sri_frame_n*1024+i]

= (int)sri_temp/delta + 128;

}

}
sri_frame_n++;

}

137

7. Main frame by frame time frequency encoder. This program has been modified

to read in the new codebooks and save the residual quantization indices.

#ifndef MONO_CHAN

#define MONO_CHAN 0

#endif

/* ---------- Variable for Sri Coder --------*/

char sri_out_file[100];

/*double sri_codebook[512][1024];

int *sri_index;

int sri_ind;

int sri_frame;

int sri_no_of_bands = 27;

int sri_bits_per_band[] =

9,9;

int b;

int fr_cnt=0;

int sri_frame_count=0;

int id_cnt=0;

int sri_reconst_flag=0;

int sri_band_size[28] =

0,

256,

384,

512,

576,

640,

704,

768,

800,

832,

864,

896,

912,

928,

944,

960,

138

968,

976,

984,

992,

996,

1000,

1004,

1008,

1012,

1016,

1020,

1024;*/

double sri_max = 0., sri_min = 0.;

void sri_init(int);

void sri_save(int);

int *sri_vq_index;

int sri_ind_c = 0;

int sri_frame, sri_frame_n = 0;

int sri_reconst_flag = 0;

int sri_nbands = 18;

int *sri_residue;

/* ---------- functions ---------- */

/* Encode() */

/* Encode audio file and generate bit stream. */

/* (This function evaluates the global

xxxDebugLevel variables !!!) */

static int Encode (

char *audioFileName, /* in: audio file name */

char *bitFileName, /* in: bit stream file name */

char *codecMode, /* in: codec mode string */

float bitRate, /* in: bit rate [bit/sec] */

int varBitRate, /* in: variable bit rate */

int bitReservSize, /* in: bit reservoir size [bit] */

int bitReservInit, /* in: initial bit reservoir bits */

char *encPara, /* in: encoder parameter string */

char *info, /* in: info string for bit stream */

int noHeader, /* in: disable bit stream header */

139

char *magicString, /* in: bit stream magic string */

float regionStart, /* in: start time of region */

float regionDurat, /* in: duration of region */

int numChannelOut,

/* in: number of channels (0 = as input) */

float fSampleOut)

/* in: sampling frequency (0 = as input) */

/* returns: 0=OK 1=error */

{
int mode; /* enum MP4Mode */

float fSample;

long fileNumSample;

long totNumSample;

int numChannel;

int frameNumSample,delayNumSample;

int frameMinNumBit,frameMaxNumBit;

long fSampleLong,bitRateLong;

BsBitBuffer *bitBuf;

float **sampleBuf;

BsBitStream *bitStream;

AudioFile *audioFile;

BsBitBuffer *bitHeader;

FILE *tmpFile;

int startupNumFrame,startupFrame;

int numSample;

int frameNumBit,frameAvailNumBit,usedNumBit;

int headerNumBit;

int padNumBit;

long totDataNumBit,totPadNumBit;

int minUsedNumBit,maxUsedNumBit;

int minPadNumBit,maxPadNumBit;

int minReservNumBit,maxReservNumBit;

long totReservNumBit;

int ch,i;

long startSample;

long encNumSample;

int numChannelBS;

long fSampleLongBS;

ENC_FRAME_DATA* frameData=NULL;

FIR_FILT *lowpassFilt = NULL;

140

int downsamplFac = 1;

float *tmpBuff;

/* init */

if (mainDebugLevel >= 3) {
printf("Encode:\ n");

printf("audioFileName=%s\ n",audioFileName);

printf("bitFileName=%s\ n",bitFileName);

printf("codecMode=%s\ n",codecMode);

printf("bitRate=%.3f\ n",bitRate);

printf("varBitRate=%d\ n",varBitRate);

printf("bitReservSize=%d\ n",bitReservSize);

printf("bitReservInit=%d\ n",bitReservInit);

printf("encPara=%s\ n",encPara?encPara:"(NULL)");

printf("info=%s\ n",info);

printf("noHeader=%d\ n",noHeader);

printf("magicString=%s \ n",magicString);

printf("regionStart=%.6f\ n",regionStart);

printf("regionDurat=%.6f\ n",regionDurat);

}

BsInit(0,bitDebugLevel);

AudioInit(getenv(MP4_ORI_RAW_ENV), /* headerless file format */

audioDebugLevel);

mode = 0;

do

mode++;

while (mode < MODE_NUM &&

strcmp(codecMode,MP4ModeName[mode]) != 0);

if (mode >= MODE_NUM)

CommonExit(1,"Encode: unknown codec mode %s",codecMode);

/* Sri: mycode */

{
char *temp_p;

strcpy(sri_out_file, audioFileName);

temp_p = strstr(sri_out_file, ".wav");

strcpy(temp_p, ".idx");

}

141

/* check audio file */

if ((tmpFile=fopen(audioFileName,"rb"))==NULL) {
CommonWarning("Encode:

error opening audio file %s",audioFileName);

return 1;

}
fclose(tmpFile);

/* open audio file */

audioFile = AudioOpenRead(audioFileName,&numChannel,&fSample,

&fileNumSample);

if (audioFile==NULL)

CommonExit(1,"Encode: error opening audio file %s "

"(maybe unknown format)",

audioFileName);

startSample = (long)(regionStart*fSample+0.5);

if (regionDurat >= 0)

encNumSample = (long)(regionDurat*fSample+0.5);

else

if (fileNumSample == 0)

encNumSample = -1;

else

encNumSample = max(0,fileNumSample-startSample);

/* init encoder */

bitHeader = BsAllocBuffer(BITHEADERBUFSIZE);

bitRateLong = (long)(bitRate+0.5);

fSampleLong = (long)(fSample+0.5);

numChannelBS =

(numChannelOut==0) ? numChannel : numChannelOut;

fSampleLongBS =

(fSampleOut==0) ? fSampleLong : (long)(fSampleOut+0.5);

if ((strstr(encPara, "-aac_sys") != NULL) ||

(strstr(encPara, "-aac_sys_bsac") != NULL)) {
frameData= &encFrameData;

frameData->od= &objDescr;

}

switch (mode) {

142

case MODE_PAR:

EncParInit(numChannel,fSample,bitRate,encPara,

&frameNumSample,&delayNumSample,bitHeader);

break;

case MODE_LPC:

EncLpcInit(numChannel,fSample,bitRate,encPara,

&frameNumSample,&delayNumSample,bitHeader);

break;

case MODE_G729:

bitRate=8000;

bitRateLong = (long)bitRate;

if (fSample == 48000){
lowpassFilt=initFirLowPass(48000/4000,120) ;

downsamplFac=6;

}
EncG729Init(numChannel,fSample/downsamplFac,bitRate,encPara,

&frameNumSample,&delayNumSample,bitHeader);

frameNumSample=frameNumSample*downsamplFac;

break;

case MODE_G723:

bitRate=6400;

bitRateLong = (long) bitRate;

if (fSample == 48000){
lowpassFilt=initFirLowPass(48000/4000,120) ;

downsamplFac=6;

}
EncG723Init(numChannel,fSample/downsamplFac,

bitRate,encPara,encNumSample,

&frameNumSample,&delayNumSample,bitHeader);

frameNumSample=frameNumSample*downsamplFac;

break;

case MODE_TF:

EncTfInit(numChannel,fSample,bitRate,

encPara,quantDebugLevel,

&frameNumSample,&delayNumSample,

bitHeader,frameData);

sri_frame = (int)(encNumSample/frameNumSample)+1;

sri_init(sri_frame);

break;

}

143

frameNumBit = (int)(bitRate*frameNumSample/fSample+0.5);

/* variable bit rate: minimum 8 bit/frame (1 byte) */

/* to allow end_of_bitstream detection in decoder */

frameMinNumBit = varBitRate ? 8 : frameNumBit;

frameMaxNumBit = frameNumBit+bitReservSize;

if (mainDebugLevel >= 3) {
printf("mode=%d\ n",mode);

printf("fSample=%.3f Hz (

int=%ld)\ n",fSample,fSampleLong);

printf("bitRate=%.3f bit/sec (

int=%ld)\ n",bitRate,bitRateLong);

printf("bitReservSize=%d bit (%.6f sec)",

bitReservSize,bitReservSize/bitRate);

printf("bitReservInit=%d bit",bitReservInit);

printf("frameNumSample=%d (%.6f sec/frame)",

frameNumSample,frameNumSample/fSample);

printf("delayNumSample=%d (%.6f sec)",

delayNumSample,delayNumSample/fSample);

printf("frameNumBit=%d",frameNumBit);

printf("frameMinNumBit=%d",frameMinNumBit);

printf("frameMaxNumBit=%d",frameMaxNumBit);

printf("bitHeaderNumBit=%ld",BsBufferNumBit(bitHeader));

printf("fileNumSample=%ld (%.3f sec %.3f frames)",

fileNumSample,fileNumSample/fSample,

fileNumSample/(float)frameNumSample);

printf("startSample=%ld",startSample);

printf("encNumSample=%ld (%.3f sec %.3f frames)",

encNumSample,encNumSample/fSample,

encNumSample/(float)frameNumSample);

}

/* allocate buffers */

bitBuf = BsAllocBuffer(frameMaxNumBit);

if ((sampleBuf

=(float**)malloc(numChannel*sizeof(float*)))==NULL)

CommonExit(1,"Encode: memory allocation error");

for (ch=0; ch<numChannel; ch++)

if ((sampleBuf[ch]

144

=(float*)malloc(frameNumSample*sizeof(float)))==NULL)

CommonExit(1,"Encode: memory allocation error");

if ((tmpBuff

=(float*)malloc(frameNumSample*sizeof(float)))==NULL)

CommonExit(1,"Encode: memory allocation error");

/* if we have aac_raw ,

we should treat it, as with no header ,

if we have scaleable aac the header

is will be written in aacScaleableEncode*/

if ((strstr(encPara, "-aac_raw") != NULL)

||(strstr(encPara, "-aac_sca") != NULL))

noHeader=1;

if ((strstr(encPara, "-aac_sys") != NULL)

|| (strstr(encPara, "-aac_sys_bsac") != NULL))

noHeader=0;

/* open bit stream file */

if (!noHeader)

bitStream =

BsOpenFileWrite(bitFileName,magicString,info);

else

bitStream =

BsOpenFileWrite(bitFileName,NULL, NULL);

if (bitStream==NULL)

CommonExit(1,"Encode:

error opening bit stream file %s",bitFileName);

/* write bit stream header */

if ((strstr(encPara, "-aac_sys") == NULL)

&& (strstr(encPara, "-aac_sys_bsac") == NULL)) {
if (!noHeader)

if (BsPutBit(bitStream,MP4_BS_VERSION,16) ||

BsPutBit(bitStream,numChannelBS,8) ||

BsPutBit(bitStream,fSampleLongBS,32) ||

BsPutBit(bitStream,bitRateLong,32) ||

BsPutBit(bitStream,frameNumBit,16) ||

BsPutBit(bitStream,frameMinNumBit,16) ||

145

BsPutBit(bitStream,bitReservSize,16) ||

BsPutBit(bitStream,bitReservInit,16) ||

BsPutBit(bitStream,mode,8) ||

BsPutBit(bitStream,BsBufferNumBit(bitHeader),16))

CommonExit(1,"Encode:

error writing bit stream header (frame)");

if (BsPutBuffer(bitStream,bitHeader))

CommonExit(1,"Encode:

error writing bit stream header (core)");

BsFreeBuffer(bitHeader);

headerNumBit = BsCurrentBit(bitStream);

} else {
/* write object descriptor length */

int length= BsBufferNumBit(bitHeader)/8;

int align = 8 - BsBufferNumBit(bitHeader)% 8;

if (align == 8) align = 0;

if (align != 0) {
length += 1;

}
BsPutBit(bitStream,length,32);

if (BsPutBuffer(bitStream,bitHeader))

CommonExit(1,"Encode:

error writing bit stream header (core)");

BsPutBit(bitStream,0,align);

BsFreeBuffer(bitHeader);

headerNumBit = BsCurrentBit(bitStream);

}
if (mainDebugLevel >= 3)

printf("headerNumBit=%d",headerNumBit);

/* num frames to start up encoder due to delay compensation */

startupNumFrame =

(delayNumSample+frameNumSample-1)/frameNumSample;

/* seek to beginning of first (startup)

frame (with delay compensation) */

AudioSeek(audioFile,

startSample+delayNumSample

-startupNumFrame*frameNumSample);

146

if (mainDebugLevel >= 3)

printf("startupNumFrame=%d",startupNumFrame);

/* process audio file frame by frame */

frame = -startupNumFrame;

totNumSample = 0;

totPadNumBit = 0;

frameAvailNumBit = bitReservInit;

minUsedNumBit = minPadNumBit

= minReservNumBit = frameMaxNumBit;

maxUsedNumBit = maxPadNumBit = maxReservNumBit = 0;

totReservNumBit = 0;

do

{
if (mainDebugLevel >= 1 && mainDebugLevel <= 3) {

printf("frame %4d ",frame);

fflush(stdout);

}
if (mainDebugLevel > 3)

printf("frame %4d",frame);

/* check for startup frame */

startupFrame = frame < 0;

/* read audio file */

numSample = AudioReadData(audioFile,sampleBuf,

frameNumSample);

totNumSample += numSample;

if (numSample != frameNumSample && encNumSample == -1)

encNumSample = totNumSample;

/* encode one frame */

if (!startupFrame) {
/* variable bit rate: don’t exceed bit reservoir size */

if (frameAvailNumBit > bitReservSize)

frameAvailNumBit = bitReservSize;

if (frameData!=NULL){

147

frameAvailNumBit +=

frameNumBit-(18* (frameNumBit/(250*8)+1) + 7) ;

/* minus flexmux overhead: 18 bits per

flexmux packet plus max 7 align bits*/

}else
{
frameAvailNumBit += frameNumBit;

}
if (mainDebugLevel >= 5)

printf("frameAvailNumBit=%d",frameAvailNumBit);

}

switch (mode) {
case MODE_PAR:

EncParFrame(sampleBuf,

startupFrame ? (BsBitBuffer*)NULL : bitBuf,

startupFrame ? 0 : frameAvailNumBit,

frameNumBit,frameMaxNumBit);

break;

case MODE_LPC:

EncLpcFrame(sampleBuf,

startupFrame ? (BsBitBuffer*)NULL : bitBuf,

startupFrame ? 0 : frameAvailNumBit,

frameNumBit,frameMaxNumBit);

break;

case MODE_G729:

/* I’d suggest just to use frameNumSample! */

/* numSample is for internal

purposes only ... HP 970630 */

if (numSample !=frameNumSample)

break;

if (downsamplFac!=0 && lowpassFilt!=NULL){
firLowPass(sampleBuf[MONO_CHAN],tmpBuff,

numSample, lowpassFilt);

subSampl(tmpBuff,sampleBuf[MONO_CHAN],

downsamplFac,&numSample);

}
EncG729Frame(sampleBuf,

startupFrame ? (BsBitBuffer*)NULL : bitBuf,

startupFrame ? 0 : frameAvailNumBit,

frameNumBit,frameMaxNumBit,numSample);

148

break;

case MODE_G723:

/* I’d suggest just to use frameNumSample! */

/* numSample is for internal

purposes only ... HP 970630 */

if (numSample !=frameNumSample)

break;

if (downsamplFac!=0 && lowpassFilt!=NULL){

firLowPass(sampleBuf[MONO_CHAN],tmpBuff,

numSample, lowpassFilt);

subSampl(tmpBuff,sampleBuf[MONO_CHAN],

downsamplFac,&numSample);

}
EncG723Frame(sampleBuf,

startupFrame ? (BsBitBuffer*)NULL : bitBuf,

startupFrame ? 0 : frameAvailNumBit,

frameNumBit,frameMaxNumBit,numSample);

break;

case MODE_TF:

EncTfFrame(sampleBuf,

startupFrame ? (BsBitBuffer*)NULL : bitBuf,

startupFrame ? 0 : frameAvailNumBit,

frameNumBit,frameMaxNumBit,

bitRateLong,fSampleLong,frameData);

break;

}

if (!startupFrame) {
usedNumBit = BsBufferNumBit(bitBuf);

if (mainDebugLevel >= 5)

printf("usedNumBit=%d",usedNumBit);

/* write bit stream */

if (usedNumBit > frameAvailNumBit)

CommonExit(1,"Encode:

more bits used than available in frame+buffer");

if (BsPutBuffer(bitStream,bitBuf))

CommonExit(1,"Encode: error writing bit stream data");

frameAvailNumBit -= usedNumBit;

149

if (frameData==NULL){
/* write padding bits */

padNumBit = 0;

if (frameAvailNumBit

-frameNumBit+frameMinNumBit > bitReservSize) {
padNumBit = frameAvailNumBit

-frameNumBit+frameMinNumBit-bitReservSize;

if (mainDebugLevel >= 5)

printf("padNumBit=%d",padNumBit);

for (i=0; i<padNumBit; i++)

if (BsPutBit(bitStream,0,1))

CommonExit(1,"Encode:

error writing bit stream padding bits");

frameAvailNumBit -= padNumBit;

totPadNumBit += padNumBit;

}
}
if (minUsedNumBit > usedNumBit)

minUsedNumBit = usedNumBit;

if (maxUsedNumBit < usedNumBit)

maxUsedNumBit = usedNumBit;

if (minPadNumBit > padNumBit)

minPadNumBit = padNumBit;

if (maxPadNumBit < padNumBit)

maxPadNumBit = padNumBit;

if (minReservNumBit > frameAvailNumBit)

minReservNumBit = frameAvailNumBit;

if (maxReservNumBit < frameAvailNumBit)

maxReservNumBit = frameAvailNumBit;

totReservNumBit += frameAvailNumBit;

}

frame++;

}
/*while(encNumSample < 0 || (long)frame*frameNumSample

< (long)frameNumSample);*/

150

while(encNumSample < 0 ||

frame*(long)frameNumSample < encNumSample);

if (mainDebugLevel >= 1 && mainDebugLevel <= 3)

printf(" ");

totDataNumBit =

BsCurrentBit(bitStream)-headerNumBit-totPadNumBit;

if (frameData==NULL){
/* write last frame and bit reservoir padding bits */

/* required also in case of variable bit rate */

/* to allow end_of_bitstream detection in decoder */

for (i=0; i<frameAvailNumBit; i++)

if (BsPutBit(bitStream,0,1))

CommonExit(1,"Encode:

error writing bit reservoir padding bits");

}

if (mainDebugLevel >= 3) {
printf("totNumFrame=%d",frame);

printf("encNumSample=%ld (%.3f sec %.3f frames)",

encNumSample,encNumSample/fSample,

encNumSample/(float)frameNumSample);

printf("totNumSample=%ld",totNumSample);

printf("totNumBit=%ld",BsCurrentBit(bitStream));

printf("totDataNumBit=%ld (%.3f bit/frame %.3f bit/sec)",

totDataNumBit,totDataNumBit/(float)frame,

totDataNumBit/(float)frame*fSample/frameNumSample);

printf("totPadNumBit=%ld",totPadNumBit);

printf("lastPadNumBit=%d",frameAvailNumBit);

printf("minUsedNumBit=%d",minUsedNumBit);

printf("maxUsedNumBit=%d",maxUsedNumBit);

printf("minPadNumBit=%d",minPadNumBit);

printf("maxPadNumBit=%d",maxPadNumBit);

printf("minReservNumBit=%d",minReservNumBit);

printf("maxReservNumBit=%d",maxReservNumBit);

printf("avgReservNumBit=%.1f",

totReservNumBit/(float)frame);

}

151

/* free encoder memory */

switch (mode) {
case MODE_PAR:

EncParFree();

break;

case MODE_LPC:

EncLpcFree();

break;

case MODE_TF:

EncTfFree();

sri_save(sri_frame);

break;

}

/* close audio file */

AudioClose(audioFile);

/* close bit stream file */

if (BsClose(bitStream))

CommonExit(1,"Encode: error closing bit stream file");

/* free buffers */

if (numChannel>1)

for (ch=0; ch<numChannel; ch++)

free(sampleBuf[ch]);

free(sampleBuf);

free(tmpBuff);

BsFreeBuffer(bitBuf);

return 0;

}

/* ---------- main ---------- */

int main (int argc, char *argv[])

{
char *progName = "<no program name>";

int result;

char oriFileName[STRLEN],bitFileName[STRLEN];

152

char infoDate[STRLEN];

int i,j,len;

int fileIdx;

char *info,*infoTail;

time_t curTime;

/* evaluate command line */

CmdLineInit(0);

result = CmdLineEval(argc,argv,paraList,

switchList,1,&progName);

if (result) {
if (result==1) {

printf("%s: %s",progName,PROGVER);

CmdLineHelp(progName,paraList,switchList,stdout);

EncParInfo(stdout);

EncLpcInfo(stdout);

EncTfInfo(stdout);

EncG729Info(stdout);

EncG723Info(stdout);

exit (1);

}
else

CommonExit(1,"command line error ("-h" for help)");

}

if (mainDebugLevel >= 1)

printf("%s: %s",progName,PROGVER);

if (mainDebugLevel >= 2) {
printf("CVS Id: %s",CVSID);

printf("%s",EncParInfo(NULL));

printf("%s",EncLpcInfo(NULL));

printf("%s",EncTfInfo(NULL));

printf("%s",EncG723Info(NULL));

printf("%s",EncG729Info(NULL));

}

CmdLineInit(cmdDebugLevel);

/* calc variable default values */

if (!bitReservInitUsed)

bitReservInit = bitReservSize;

153

if (!regionDuratUsed)

regionDurat = -1;

if (!oriPathUsed)

oriPath = getenv(MP4_ORI_PATH_ENV);

if (!bitPathUsed)

bitPath = getenv(MP4_BIT_PATH_ENV);

if (!oriExtUsed)

oriExt = getenv(MP4_ORI_FMT_ENV);

if (oriExt==NULL)

oriExt = MP4_ORI_EXT;

/* check command line options */

if (bitRate <= 0)

CommonExit(1,"bit rate <= 0");

if (bitReservSize < 0)

CommonExit(1,"bit reservoir size < 0");

if (bitReservInit < 0)

CommonExit(1,"bit reservoir initial bits < 0");

if (bitReservInit > bitReservSize)

CommonExit(1,"bit reservoir initial bits > size");

if (regionDuratUsed && regionDurat < 0)

CommonExit(1,"duration of region < 0");

if (outFileNameUsed && varArgIdx[0]>=0 && varArgIdx[1]>=0)

CommonExit(1,"only one input file allowed when using -o");

if (varArgIdx[0]<0)

CommonExit(1,"no input file specified");

if(strstr(encPara, "-aac_sca")) {
if (bitReservSize<6000)

bitReservSize=6000 ;

bitReservInit=0;

varBitRate=1;

}

/* generate info string for bit stream */

len = 1;

curTime = time((time_t*)NULL);

len += strftime(infoDate,STRLEN,

"%Y/%m/%d %H:%M:%S UTC",gmtime(&curTime));

len += strlen(PROGVER);

j = 0;

154

for (i=0; i<argc; i++)

if (varArgIdx[j] == i)

j++;

else

len += strlen(argv[i])+1;

len += 2*STRLEN;

len += 5*7+1;

if ((info=(char*)malloc(len))==NULL)

CommonExit(1,"memory allocation error");

strcpy(info," ");

strcat(info,"date: ");

strcat(info,infoDate);

strcat(info," ");

strcat(info,"prog: ");

strcat(info,PROGVER);

strcat(info," ");

strcat(info,"para:");

j = 0;

for (i=0; i<argc; i++) {
if (varArgIdx[j] == i)

j++;

else

{
strcat(info," ");

strcat(info,argv[i]);

}
}
strcat(info,"");

infoTail = info+strlen(info);

/* process all files on command line */

fileIdx = 0;

while (varArgIdx[fileIdx] >= 0) {

/* compose file names */

if (ComposeFileName(argv[varArgIdx[fileIdx]],

0,oriPath,oriExt,oriFileName,

STRLEN))

CommonExit(1,"composed file name too long");

if (outFileNameUsed) {
if (ComposeFileName(outFileName,

155

0,bitPath,bitExt,bitFileName,

STRLEN))

CommonExit(1,"composed file name too long");

}
else

if (ComposeFileName(argv[varArgIdx[fileIdx]],1,bitPath,bitExt,

bitFileName,STRLEN))

CommonExit(1,"composed file name too long");

/* complete info string */

*infoTail = ’\ 0’;

strcat(infoTail,"ori: ");

strcat(infoTail,oriFileName);

strcat(infoTail," ");

strcat(infoTail,"bit: ");

strcat(infoTail,bitFileName);

strcat(infoTail," ");

/* encode file */

if (mainDebugLevel >= 1)

printf("encoding %s -> %s",oriFileName,bitFileName);

if (Encode(oriFileName,bitFileName,codecMode,bitRate,varBitRate,

bitReservSize,bitReservInit,encPara,

(char *)(noInfo ? "" : info),noHeader,magicString,

regionStart,regionDurat,numChannelOut,fSampleOut))

CommonWarning("error encoding audio file %s",oriFileName);

fileIdx++;

}

CmdLineEvalFree(paraList);

if (mainDebugLevel >= 1)

printf("%s: finished",progName);

return 0;

}

void sri_init(int frame)

{

156

int i,j;

int sri_no_of_bands = 18;

int sri_nsf = 1024;

/* double sample;

FILE *sri_bk;

sri_bk = fopen("frame_cb","r");

if(sri_bk == NULL)

{
puts("Cannot open file");

}
for(i=0;i<512;i++)

{
for(j=0;j<1024;j++)

{
fread(&sample,sizeof(sample),1,sri_bk);

sri_codebook[i][j] = sample;

}
}
fclose(sri_bk);*/

printf("INIT: malloc (%dx%d)", frame,2* sri_no_of_bands);

sri_vq_index = (int*)malloc(frame*2*sri_no_of_bands*sizeof(int));

if(sri_vq_index==NULL)

{
printf("Memory allocation failed");

}

printf("INIT: malloc (%dx%d)", frame, sri_nsf);

sri_residue = (int*)malloc(frame*sri_nsf*sizeof(int));

if(sri_residue == NULL)

printf("Memory allocation failed ");

}

void sri_save(int frame)

{
int i, sri_nsf = 1024;

FILE *sri_idx;

157

FILE *sri_sample;

int sri_no_of_bands = 18;

printf("sri_frame = %d",frame);

/* open index file */

sri_idx = fopen("sri_idx","w");

if(sri_idx == NULL)

{
puts("Cannot open index file");

}
fwrite(&frame,sizeof(frame),1,sri_idx);

fwrite(&sri_no_of_bands, sizeof(sri_no_of_bands),1,sri_idx);

for(i=0;i<(frame*2*sri_no_of_bands);i++)

{
fwrite(&sri_vq_index[i],sizeof(int),1,sri_idx);

}

/* open file to store mdct coeff */

sri_sample = fopen("sri_residue","w");

if(sri_sample == NULL)

{
puts("sri_save: Cannot open file sri_residue");

}
for(i=0;i<(frame*sri_nsf);i++)

{
fwrite(&sri_residue[i],sizeof(int),1,sri_sample);

}
fclose(sri_idx);

fclose(sri_sample);

}

8. Scalable decoder for TWIN-VQ

/* External variables for sri decoder */

extern int sri_frame;

extern int sri_reconst_flag;

extern int *sri_vq_index;

extern int sri_nbands;

extern int *sri_residue;

158

int sri_bit_alloc[27] =

{16,16,16,16,16,16,16,16,16,16,
16,16,16,16,16,16,16,16,0,0,0,0,0,0,0,0,0};

void sri_vq_dec(int*,int*,int*,

double*,double*,

int,int,double*);

void ntt_tf_requantize_spectrum(/* Input */

ntt_INDEX *indexp,

/* Output */

double flat_spectrum[])

{
int vq_bits, n_sf, cb_len_max;

double *sp_cv0, *sp_cv1;

int i;

/*--- Parameter settings ---*/

switch(indexp->w_type){
case ONLY_LONG_WINDOW:

case LONG_SHORT_WINDOW:

case SHORT_LONG_WINDOW:

case LONG_MEDIUM_WINDOW:

case MEDIUM_LONG_WINDOW:

/* available bits */

vq_bits = ntt_VQTOOL_BITS;

/* codebooks */

sp_cv0 = (double *)ntt_codev0;

sp_cv1 = (double *)ntt_codev1;

cb_len_max = ntt_CB_LEN_READ + ntt_CB_LEN_MGN;

/* number of subframes in a frame */

n_sf = ntt_N_SUP;

break;

case ONLY_MEDIUM_WINDOW:

case MEDIUM_SHORT_WINDOW:

case SHORT_MEDIUM_WINDOW:

/* available bits */

vq_bits = ntt_VQTOOL_BITS_M;

/* codebooks */

sp_cv0 = (double *)ntt_codev0m; sp_cv1 = (double *)ntt_codev1m;

159

cb_len_max = ntt_CB_LEN_READ_M + ntt_CB_LEN_MGN;

/* number of subframes in a frame */

n_sf = ntt_N_SUP * ntt_N_MID;

break;

case ONLY_SHORT_WINDOW:

/* available bits */

vq_bits = ntt_VQTOOL_BITS_S;

/* codebooks */

sp_cv0 = (double *)ntt_codev0s; sp_cv1 = (double *)ntt_codev1s;

cb_len_max = ntt_CB_LEN_READ_S + ntt_CB_LEN_MGN;

/* number of subframes in a frame */

n_sf = ntt_N_SUP * ntt_N_SHRT;

break;

default:

fprintf(stderr, "ntt_tf_requantize_spectrum():

%d: No such window type.",

indexp->w_type);

exit(1);

}
if(sri_reconst_flag == 0)

{
ntt_vex_pn(indexp->wvq,

sp_cv0, sp_cv1, cb_len_max,

n_sf, ntt_N_FR*ntt_N_SUP,

vq_bits,

flat_spectrum);

}
else

{
sri_vq_dec((sri_vq_index+sri_frame*36),

(sri_residue+sri_frame*1024),

sri_bit_alloc,

sp_cv0, sp_cv1, cb_len_max,

ntt_N_FR*ntt_N_SUP,

flat_spectrum);

sri_frame++;

}

}

void sri_vq_dec(int *index,

160

int *index_res,

int *bit_alloc,

double *sp_cv0,

double *sp_cv1,

int cv_len_max,

int block_size,

double *signal)

{
int mask,i,vq_c,band_c;

int pol0, pol1, index0, index1;

int residue_bits, residue_bits_sample;

int bands[27] = {4,4,4,4,4,4,4,4,8,8,8,8,
16,16,16,16,32,32,32,32,

64,64,64,64,128,128,256};
int band_pos[27];

int quant1, quant2;

double delta, delta_orig, out;

band_pos[0] = 0;

for(i=0;i<26;i++)

band_pos[i+1] = band_pos[i]+bands[i];

mask = (0x1 << ntt_MAXBIT_SHAPE) - 1;

vq_c = 0;

for(band_c=0;band_c<27;band_c++)

{
pol0 = 0;

pol1 = 0;

index0 = 0;

index1 = 0;

residue_bits = bit_alloc[band_c];

if(band_c<18)

{
if(residue_bits >= 8)

{
index0 = (index[vq_c]) & mask;

pol0 =

1 - 2*((index[vq_c] >>

(ntt_MAXBIT_SHAPE)) & 0x1);

residue_bits = residue_bits - 8;

161

}
if(residue_bits >= 8)

{
index1 = (index[vq_c+1]) & mask;

pol1 =

1 - 2*((index[vq_c+1] >>

(ntt_MAXBIT_SHAPE)) & 0x1);

residue_bits = residue_bits - 8;

}
vq_c = vq_c+2;

}
residue_bits_sample =

(int)(residue_bits/bands[band_c])-1;

if(residue_bits_sample < 0)

residue_bits_sample = 0;

delta = 6000.0/pow(2,residue_bits_sample);

delta_orig = 6000.0/128;

for(i=0;i<bands[band_c];i++)

{
signal[band_pos[band_c]+i] =

(pol0*sp_cv0[index0*cv_len_max+i]

+ pol1*sp_cv1[index1*cv_len_max+i])*0.5;

quant1 = index_res[band_pos[band_c]+i];

if(quant1 > 127)

{
quant2 = (int)((quant1-128)*delta_orig/delta);

out = (double)(quant2*delta);

}
else

{
quant2 = (int)(-1*quant1*delta_orig/delta);

out = (double)(quant2*delta);

}
signal[band_pos[band_c]+i] =

signal[band_pos[band_c]+i] + out;

}
}

}

162

/*--- Sri Variables ---*/

int sri_frame = 0;

int sri_reconst_flag = 0;

int *sri_vq_index;

int sri_nbands;

void sri_dec_init(void);

int *sri_residue;

void sri_dec_init()

{
int i,j, idly;

int nframes, nbands;

double idly1;

//double sample;

FILE *sri_idx, *sri_res, *sri_bit;

printf("Coder type: 0 - for original decoder\ n

1 - for new decoder\ n");

scanf("%d",&sri_reconst_flag);

/*sri_bk = fopen("frame_cb","r");

if(sri_bk == NULL)

{
printf("Cannot open file\ n");

}
for(i=0;i<512;i++)

{
for(j=0;j<1024;j++)

{
fread(&sample,sizeof(sample),1,sri_bk);

sri_codebook[i][j] = sample;

}
}*/

sri_idx = fopen("sri_idx","r");

if(sri_idx == NULL)

{
printf("Cannot open index file\ n");

}

fread(&idly,sizeof(idly),1,sri_idx);

163

nframes = idly;

fread(&idly,sizeof(idly),1,sri_idx);

nbands = idly;

sri_nbands = nbands;

printf("INIT: malloc (%dx%d)\ n", nframes, 2*nbands);

sri_vq_index = (int*)malloc(nframes*2*nbands*sizeof(int));

if(sri_vq_index==NULL)

{
printf("Memory allocation failed\ n");

}
for(i=0;i<nframes*2*nbands;i++)

{
fread(&idly,sizeof(idly),1,sri_idx);

sri_vq_index[i] = idly;

}

sri_residue = (int*)malloc(nframes*1024*sizeof(int));

if(sri_vq_index==NULL)

printf("Memory allocation failed\ n");

sri_res = fopen("sri_residue","r");

if(sri_res == NULL)

{
printf("Cannot open residue index file \ n");

}
for(i=0;i<nframes*1024;i++)

{
fread(&idly,sizeof(idly),1,sri_res);

sri_residue[i] = idly;

}

/* sri_bit = fopen("bit_alloc","r");

if(sri_bit == NULL);

{
printf("Cannot open bit allocation file \ n");

}
for(i=0;i<27;i++)

{
fread(&idly,sizeof(int),1,sri_bit);

164

sri_bit_alloc[i] = idly;

}
fclose(sri_bit); */

/* temporary goofy fix */

fclose(sri_idx);

fclose(sri_res);

}

165

C and Matlab programs to implement the greedy bit allocation

1. The following C program performs the greedy bit allocation as described in

Chapter 6.

/***/

/* Greedy Bit Allocation */

/***/

/* This program calculates the bit allocation

for the sequence bene.wav. The bit allocation

can be calculated for any given sequence or

collection of sequences */

include <stdio.h>

include <stdlib.h>

include <math.h>

int main(void)

{
int i,j,k,N;

int bit_inc = 8;

int bit_alloc_table[82][27];

int bit_alloc[27] = {4,4,4,4,4,4,4,
4,4,4,4,4,8,8,

8,8,8,8,0,0,0,

0,0,0,0,0,0};
int bit_alloc_new[27] = {4,4,4,4,4,4,4,4,

4,4,4,4,8,8,8,8,

8,8,0,0,0,0,0,0,

0,0,0};

double max_q = 0, quality; /* Quality metric */

FILE *qp, *bap, *batp;

for(i=0;i<82;i++)

{
for(j=0;i<27;i++)

{

166

if(bit_alloc[i] == 0){
N = i;

break;

}
}

/* Lower frequency bands refinement */

for(j=0;j<N;j++)

{
bit_alloc_new[j] = bit_alloc[j] + bit_inc;

/* Write the new bit allocation into file */

bap = fopen("alloc","w");

for(k=0;k<27;k++)

{
fprintf(bap,"%d",bit_alloc_new[k]);

}
fclose(bap);

system("./mp4dec bene.mp4");

system("matlab < q_test.m");

qp = fopen("quality","r");

fscanf(qp,"%lf",&quality);

fclose(qp);

if(quality > max_quality)

{
max_quality = quality;

for(k=0;k<27;k++)

{
bit_alloc_table[i][k] = bit_alloc_new[k];

}
}

}

/* Higher frequency band coarse refinement */

bit_alloc_new[N] = bit_alloc[N] + bit_inc;

167

/* Write the new bit allocation into file */

bap = fopen("alloc","w");

for(k=0;k<27;k++)

{
fprintf(bap,"%d",bit_alloc_new[k]);

}
fclose(bap);

system("./mp4dec bene.mp4");

system("matlab < q_test.m");

qp = fopen("quality","r");

fscanf(qp,"%lf",&quality);

fclose(qp);

if(quality > max_quality)

{
max_quality = quality;

for(k=0;k<27;k++)

{
bit_alloc_table[i][k] = bit_alloc_new[k];

}
}

for(j=0;j<27;j++)

bit_alloc[j] = bit_alloc_table[i][k];

}

/* Write the bit allocation table into file */

batp = fopen("bit_allocation_table","w");

for(i=0;i<82;i++)

{
for(j=0;j<27;j++)

{
fprintf(batp,"%d",bit_allocation_table[i][j]);

}
}
fclose(batp);

168

return(0);

}

2. The Matlab program below estimates the quality of a decoded audio sequence

using the qmetric.m program written by Charles D. Creusere (ccreuser@nmsu.edu).

Quality of an audio sequence is given by a number between 0 (poor quality) to

100 (best quality).

%--

% Program to find the qualtiy of two audio sequences

% This program is meant to be used by greedy.c

% program for the greedy bit allocation.

%--

clear;clc;close all;

[x,fs,N] = wavread(’../original/bene.wav’);

[x2,fs1,N1] = wavread(’../decoded/bene.wav’);

if fs != fs1

disp(’The sampling rates do not match’);

exit;

end

quality = qmetric(x,x2);

save quality -ASCII

exit

169

REFERENCES

[1] T. Moriya, N. Iwakami, A. Jin, and T. Mori, “A design of lossy and lossless
scalable audio coding,” in Proceedings. 2000 IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2000 ICASSP ’00, vol. 2.

[2] R. Yu, S. Rahardja, L. Xiao, and C. C. Ko, “A fine granular scalable to lossless
audio coder,” IEEE transactions on Audio, Speech and Language processing,
vol. 14, no. 4, July 2006.

[3] R. Geiger, G. Schuller, and T. Sporer, “Fine grain scalable perceptual and
lossless coding based on intmdct,” in IEEE workshop on applications of signal
processing to audio and acoustics, Oct. 2003.

[4] J. Zhou, Q. Zhang, Z. Xiong, and W. Zhu, “Error resilient scalable audio
coding (ersac) for mobile applications,” in IEEE Fourth Workshop on Multi-
media Signal Processing, 2001, Oct. 2001.

[5] F. Riera-Palou, A. den Brinker, and A. Gerrits, “A hybrid parametric-
waveform approach to bit stream scalable audio coding,” vol. 2, Nov. 2004.

[6] R. Mohan, J. R. Smith, and C.-S. Li, “Adapting multimedia internet content
for universal access,” IEEE Trans. Multimedia, vol. 1, no. 1, p. 104114, Mar.
1999.

[7] C. Dorize, J.-M. Muller, and D. Sereno, “Detailed description of the mvat
audio candidate to mpeg-4,” ISO/IEC/JTC1/SC29/WG11, MPEG95/0412,
Nov. 1995.

[8] J. Herre et al., “The integrated filterbank based scalable mpeg-4 audio coder,”
in 105 th Convention of the audio engineering society, Preprint 4810.

[9] D. Sinha and C. Sundberg, “Unequal error protection (uep) for perceptual
audio coders,” in Proc. International Conference on Acoustics, Speech and
Signal Processing, Phoenix, Arizona, Apr. 1999.

[10] A. Jin et al., “Scalable audio coder based on quantizer units of mdct coeffi-
cients,” in Proc. ICASSP’99, 1999, pp. 897–900.

[11] J. Li, “Embedded audio coding (eac) with implicit auditory masking,” ACM
Multimedia, Dec. 2002.

[12] P. Chou and Z. Miao, “Rate-distortion optimized stream-
ing of packetized media,” 2001. [Online]. Available: cite-
seer.ist.psu.edu/chou01ratedistortion.html

170

[13] S. Ye, H. Ai, and C. Kuo, “A progressive approach for perceptual audio
coding,” in Proc. 2000 IEEE International Conference on Multimedia and
Expo, vol. 2, pp. 815–818.

[14] A. Scheuble and Z. Xiong, “Scalable audio coding using the nonuniform mod-
ulated complex lapped transform,” in Proc. 2001 IEEE International Con-
ference on Acoustics, Speec, and Signal Processing, vol. 5, pp. 3257–3260.

[15] Real producer basic 8.51. [Online]. Available: http://www.realnetworks.com/

[16] Windows media technologies 8.0. [Online]. Available:
http://www.microsoft.com/

[17] C. Dunn. Winsac 1.0. [Online]. Available: http://www.scalatech.co.uk/

[18] R. Vafin and W. B. Kleijn, “Rate-distortion optimized quantization in mul-
tistage audio coding,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, no. 1, pp. 311–320, Jan. 2006.

[19] J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–3462, 1993.

[20] (1998(E)) Mpeg-4 standards document iso/iec fcd 14496 - 3 subpart 4.
[Online]. Available: http://www.chiariglione.org/mpeg/

[21] A. Gersho and R. Gray, Vector Quantization and Signal Compression. MA
02061, USA: Kluwer Academic Publishers, 1992.

[22] K. Brandenburg, O. Kunz, and A. Sugiyama, “Mpeg-4 natuaral audio cod-
ing,” Signal Processing: Image Communication, vol. 15, no. 1, Jan. 2000.

[23] P. Chu, “Quadrature mirror filter design for an arbitrary number of equal
bandwidth channels,” vol. 33, Feb. 1985.

[24] A. Jin, “Scalable audio coder based on quantizer units of mdct coefficients,”
in Conf. Rec., Audio Engineering Society Convention, San Francisco, CA,
Oct. 1992, pp. 897–900.

[25] C. Creusere, “Understanding perceptual distortion in mpeg scalable au-
dio coding,” IEEE transactions on Acoustics Speech and Signal Processing,
vol. 15, no. 3, pp. 422–431, May 2005.

[26] N. Iwakami and T. Moriya, “Transform domain weighted interleaved vector
quantization (twin vq),” in Proc. 101st convention of the audio engineering
society, p. preprint 4810.

171

[27] S. Kandadai and C. Creusere, “Reverse engineering vector quantizers using
training set synthesis,” in Proc. of the European Signal Processing Confer-
ence, Vienna, Austria, Sept. 2004, pp. 789–792.

[28] ——, “Reverse engineering vector quantizers for repartitioned vector spaces,”
in 39th Asilomar Conference on Signals, Systems and Computers, Asilomar,
CA, Nov. 2005.

[29] K. Fukunaga, Introduction To Statistical Pattern Recognition. NY 10003:
Academic Press Inc.

[30] T. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice.
New Jersey, USA: Prentice Hall PTR, 2001.

[31] L. Rabiner and R. Schafer, Digital Processing of Speech Signals. New Jersey,
USA: Prentice Hall PTR, 1978.

[32] T. Painter and A. Spanias, “Pereceptual coding of digital audio,” Proceedings
of the IEEE, vol. 88, no. 4, Apr. 2000.

[33] J. Johnston, “Estimation of perceptual entropy using noise masking criteria,”
in Proc. ICASSP-88, May 1988, pp. 2524–2527.

[34] E. Zwicker and H. Fastl, Psychoacoustics Facts and Models. Berlin, Ger-
many: Springer-Verlag, 1990.

[35] E. Terhardt, “Calculating virtual pitch,” Hearing Res., vol. 1, pp. 155–182,
1979.

[36] D. Greenwood, “A cochlear frequency position function for several species,”
Journal of Acoustic Society of America, vol. 87, pp. 2592–2605, 1990.

[37] B. Moore, “Masking in the human auditory system,” Collected papers on
digital audio bit-rate reduction, pp. 9–19, 1996.

[38] B. Scharf, “Critical bands,” Foundations of Modern Auditory Theory.

[39] R. Hellman, “Assymetry of masking between noise and tone,” Percep. Psy-
chphys., vol. 11, pp. 241–246, 1972.

[40] J. Hall, “Auditory psychophysics of coding applications,” The Digital Signal
Processing Handbook, pp. 39.1–39.25, 1998.

[41] H. Fletcher and W. Munson, “Relation between loudness and masking,” Jour-
nal of the Acoustic Society of America, vol. 9, pp. 1–10, 1937.

172

[42] J. Egan and H. Hake, “On the masking pattern of simple auditory stimulus,”
Journal of the Acoustic Society of America, vol. 22, pp. 622–630, 1950.

[43] G. Miller, “Sensitivity to changes in the intensity of white noise and its rela-
tion to masking and loudness,” Journal of the Acoustic Society of America,
vol. 19, pp. 609–619, 1947.

[44] J. Hall, “Asymmetry of masking revisited: Generalization of masker and
probe bandwidth,” Journal of the Acoustic Society of America, vol. 101, pp.
1023–1033, 1997.

[45] S. B. W. Jesteadt and J. Lehman, “Forward masking as a function of fre-
quency, masker level and signal delay,” Journal of the Acoustic Society of
America, vol. 71, pp. 950–962, 1982.

[46] B. Moore, “Psychophysical tuning curves measured in simultaneous and for-
ward masking,” Journal of the Acoustic Society of America, vol. 63, pp. 524–
532, 1978.

[47] K. Brandenburg, “Perceptual coding of high quality digital audio,” Applica-
tions of Digital Signal Processing to Audio and Acoustics, 1998.

[48] J. Johnston, “Transform coding of audio signals using perceptual noise crite-
ria,” IEEE Journal on Selected Areas in Communications, vol. 6, pp. 314–23,
Feb. 1988.

[49] H. Fuchs, “Improving joint stereo audio coding by adaptive inter channel pre-
diction,” in Proceedings 1993 IEEE ASSP Workshop Apps. of Signal Process-
ing to Aud. and Acoustics, 1993.

[50] ——, “Improving mpeg audio coding by backward adaptive linear stereo
prediction,” in Proceedings 99th Conv. Aud. Eng. Soc., Oct. 1995.

[51] P. Noll, “Wideband speech and audio coding,” IEEE Communications Mag-
azine, pp. 34–44, Nov. 1993.

[52] ——, “Digital audio coding for visual communications,” Proceedings of IEEE,
vol. 83, pp. 925–943, June 1995.

[53] S. Quackenbush, “Noiseless coding of quantized spectral components in mpeg-
2 advance audio coder,” in IEEE Workshop Applications of Signal Processing
to Audio and Acoustics, 1997.

[54] D. Schulz, “Improving audio codecs by noise substitution,” J. Audio Eng.
Soc., pp. 593–598, July 1996.

173

[55] S. Park, Y. Kim, S. Kim, and Y. Seo, “Multi-layer bit-sliced bit-rate scalable
audio coding,” 103rd AES Convention, 1997.

[56] N. Iwakami, T. Moriya, , and S. Miki, “High quality audio coding at less than
64 kbits/s by using transform domain weighted interleave vector quantization
(twinvq),” in Proc. of the Internation Conf. on Acoustics Speech and Signal
Processing, May 1995, pp. 3095–3098.

[57] T. Moriya and M. Honda, “Tranform coding of speech using a weighted vector
quantizer,” vol. 6, no. 2, Feb. 1988.

[58] T. Moriya, “Two-channel conjugate vector quantization for noisy channel
speech coding,” vol. 10, no. 5, June 1995.

[59] ——, “Design of robust conjugate vector quantizer for noisy channel speech
coding,” in Proc. ISIT, p. 164.

[60] S. Kandadai and C. Creusere, “Perceptually-weighted audio coding that
scales to extremely low bitrates,” in Proceedings Data Compression Con-
ference, Mar. 2006.

[61] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizatizer
design,” IEEE Transactions on Communications, vol. 25, pp. 84–95, 1980.

[62] E. Parzen, “On estimation of a probability density function and mode,” An-
nals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[63] R.O.Duda, P.E.Hart, and D.G.Stork, Pattern Classification. New York,
USA: John Wiley and Sons, Inc., 2001.

[64] B. Dasarathy, NN Pattern Classification Techniques. IEEE Computer Soci-
ety Press, 1991.

[65] P. Hart, “The condensed nearest neighbor rule,” IEEE Transaction on In-
formation Theory, vol. 14, no. 3, May 1968.

[66] P. Mitra, C. Murthy, and S. Pal, “Density-based multiscale data conden-
sation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 6, June 2002.

[67] M. Girolami and C. He, “Probability density estimation from optimally con-
densed data samples,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 10, Oct. 2003.

[68] J. Seaman and P. Odell, “Variance upper bounds,” Encyclopedia of Statistical
Sciences, vol. 9, pp. 480–484, 1988.

174

[69] “The maximum variance of restricted unimodal distribution,” The annals of
Mathematical Statistics, vol. 40, no. 5, pp. 1746–1752, Oct. 1969.

[70] A. Gersho, “Asymptotically optimal block quantization,” IEEE trans. On
Information Theory, vol. 25, no. 4, July 1979.

[71] P. Zador, “Asymptotic quantization error of continous signal and the quan-
tization dimension,” IEEE trans. Inform. Theory, vol. 28, no. 2, Mar. 1982.

[72] J. A. Bucklew and G. L. Wise, “Multidimensional asymptotic quantization
theory with rth power distortion measures,” IEEE trans. On Information
Theory, vol. 28, no. 2, Mar. 1982.

[73] I. Deak, “Probabilities of simple n-dimensional sets for the normal distribu-
tion,” IIE Transactions, vol. 35, pp. 285–293, 2003.

[74] K.-T. Fang, Symmetric Multivariate and Related Distributions, Monographs
on Statistics and Applied Probability 36. Chapman and Hall, 1987.

[75] M. N. Do and M. Vetterli, “Contourlets: a directional multiresolution image
representation,” IEEE International Conference on Image Processing, Sept.
2002.

[76] M. N. Do. Contourlet tool box. [Online]. Available:
http://www.ifp.uiuc.edu/ minhdo/software/

[77] P. Vaidyanathan, Multirate Systems and Filterbanks. Prentice Hall PTR,
1993.

[78] H. S. Malvar, Signal Processing with Lapped Transforms. Artech House
Publishers, 1992.

[79] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice Hall
PTR, 1995.

[80] J. Princen and A. Bradley, “Analysis/synthesis filter bank design based on
time domain aliasing cancellation,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP - 34, pp. 1153–1161, Oct. 1986.

[81] H. Malvar, “Lapped transforms for efficient transform/subband coding,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 969–978, June
1990.

[82] S. Cheung and J. Lim, “Incorporation of biorthogonality into lapped trans-
forms for audio compression,” in Proc. Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP-95), pp. 3079–3082.

175

[83] J. Princen, J. Johnson, and A. Bradley, “Subband/transform coding using
filterbank design based on time domain aliasing cancellation,” in Proc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP-87), May 1987, pp.
50.1.1–50.1.4.

[84] J. Herre and J. Johnston, “Enhancing the performance of perceptual audio
coders by using temporal noise shaping (tns),” in Proc. of 101st Convention
of the Audio Engineering Society, 1993.

[85] T. Fischer, “A pyramid vector quantizer,” IEEE Transactions on Information
Theory, vol. 32, no. 4, pp. 568–583, 1986.

[86] D. Jeong and J. Gibson, “Uniform and peicewise uniform lattice vector quan-
tization for memoryless gaussian and laplacian sources,” IEEE Transactions
on Information Theory, vol. 38, no. 3, pp. 786–804, May 1993.

[87] J. Conway and N. Sloane, “Voronoi regions of lattices, second moments of
polytopes, and quantization,” IEEE Transactions on Information Theory,
vol. 28, 1982.

[88] ——, “Fast quantizing and decoding algorithms for lattice quantizers and
codes,” IEEE Transactions on Information Theory, vol. 28, pp. 227–232,
1982.

[89] ——, Spheres Packing, Lattices and Groups. NY 10010, USA: Springer -
Verlag NY Inc.

[90] S. Simon and L. Bosse, “Design of successive approximation lattice vector
quantizers,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP’97), 1997, pp. 2697–2700.

[91] T. Thiede and E. Kabot, “New perceptual quality measure for the bitrate
reduced audio,” Preprint 4280, Copenhagen, Denmark, 1996.

[92] J. Beerends and J. Stemerdink, “A perceptual audio quality measure based
on psychoacoustic sound representation,” Journal of the Audio Engineering
Society, vol. 40, Dec. 1992.

[93] S. Morissette, B. Paillard, P. Mabilleau, and J. Soumagne, “Perceval: Per-
ceptual evaluation of the quality of audio signals,” Journal of the Audio
Engineering Society, vol. 40, pp. 21–31, January/February 1992.

[94] “Method for objective measurements of perceived audio quality,” in Recom-
mendation ITU-R BS.1387-1, Geneva, Switzerland, 1998-2001.

176

[95] (1998-2001) Methods for objective measurement of perceived audio quality,
recommendation itu-r bs.1387-1. [Online]. Available: http://www.itu.int/

[96] C. D. Creusere, R. Vanam, and K. Kallakuri, “A universal objective metric
of human subjective audio quality,” IEEE Trans. Acoust. Speech and Signal
Processing, 2006.

[97] “Method for subjective assesment of intermediate quality levels of coding
systems,” Recommendation IRU-R BS.1534-1,(Question ITU-R 220/10).

177

