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Abstract

The algebra of truth values of type-2 fuzzy sets is the set of all functions from the
unit interval into itself, with operations de�ned in terms of certain convolutions
of these functions with respect to pointwise max and min. This algebra has been
studied rather extensively, both from a theoretical and from a practical point of view.
It has a number of interesting subalgebras, and this paper is about the subalgebra
of all convex normal functions, and closely related ones. These particular algebras
are De Morgan algebras, and our concern is principally with their completeness as
lattices. A special feature of our treatment is a representation of these algebras as
monotone functions with pointwise order, making the operations more intuitive.

Key words: Type-2 fuzzy sets, normal and convex fuzzy sets, complete lattice, De
Morgan algebra, continuous lattice

1 Introduction

The subject of this paper is three De Morgan algebras, and our concern is
principally with their completeness as lattices and the question of their conti-
nuity in the sense of Gierz et al. [3,4]. These algebras arose as subalgebras of
the algebra of truth values for fuzzy sets of type-2 [11], the set of all mappings
of [0; 1] into [0; 1] with operations certain convolutions of operations on [0; 1],
as follows.
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De�nition 1 On [0; 1][0;1], de�ne operations t;u;:;�0; �1 as follows:

(1) (f t g) (x) = sup ff (y) ^ g (z) j y _ z = xg
(2) (f u g) (x) = sup ff (y) ^ g (z) j y ^ z = xg
(3) :f(x) = sup ff (y) j 1� y = xg = f(1� x)

(4) �1 (x) =

8><>: 1 if x = 10 if x 6= 1
and �0 (x) =

8><>: 1 if x = 00 if x 6= 0

The algebra M = ( [0; 1][0;1] ;t;u;:;�0; �1) is the basic algebra of truth values
for type-2 fuzzy sets, and has been studied extensively. See [7{10], for example.
Here is one example illustrating the join in M of two functions f and g.
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Determining the properties of the algebraM is a bit tedious, but is helped by
introducing the following auxiliary operations.

De�nition 2 For f 2M, let fL and fR be the elements of M de�ned by

fL(x)=_y�xf(y)
fR(x)=_y�xf(y)

One easily sees that fL and fR are the pointwise smallest increasing and
decreasing functions, respectively, in M above f . The point of this de�nition
is that the operations t and u inM can be expressed in terms of the pointwise
max and min functions and the operations fL and fR as follows [9].
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Theorem 1 The following hold for all f; g 2M.

f t g=
�
f ^ gL

�
_
�
fL ^ g

�
= (f _ g) ^ fL ^ gL

f u g=
�
f ^ gR

�
_
�
fR ^ g

�
= (f _ g) ^ fR ^ gR

Using these auxiliary operations, it is fairly routine to verify the following
properties of the algebra M. Details may be found in [6,9].

Corollary 2 Let f; g; h 2M. The basic properties of M are these.

(1) f t f = f ; f u f = f
(2) f t g = g t f ; f u g = g u f
(3) �1 u f = f ; �0 t f = f
(4) f t (g t h) = (f t g) t h; f u (g u h) = (f u g) u h
(5) f t (f u g) = f u (f t g)
(6) ::f = f
(7) : (f t g) = :f u :g; : (f u g) = :f t :g

The variety generated by M is the collection of all homomorphic images
of subalgebras of products of copies of M, or equivalently, the collection of
all algebras of the same type (i.e., having two binary operations, one unary
operation, and two constants), that satisfy all of the equations satis�ed inM.
As far as we know, the variety generated byM has not been studied. It seems
not to be known whether or not every equation satis�ed byM is a consequence
of those listed in Corollary 2, and whether or not the variety generated byM
is generated by a �nite algebra.

A subalgebra ofM is a subset ofM that is closed under all of the operations
ofM. The algebraM has a number of interesting subalgebras [9]. Our interest
here lies in subalgebras of convex normal functions.

De�nition 3 A function f 2M is normal if sup ff(x) : x 2 [0; 1]g = 1, or
equivalently, if fL _ fR = 1.

The set of normal functions forms a subalgebra of M [9].

De�nition 4 A function f 2 M is convex if for all x; y; z 2 M for which
x � y � z, we have f(y) � f(x) ^ f(z). Equivalently, f is convex if f =
fL ^ fR.

The set of convex functions forms a subalgebra of M [9].

A De Morgan algebra [1] is a bounded distributive lattice with a negation
in which the De Morgan laws hold. A subalgebra of M satis�es all of the
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properties of Corollary 2. In order for it to be a De Morgan algebra, it must
also satisfy the absorption law and distributive laws:

(5') f t (f u g) = f u (f t g) = f
(8) f t (g u h) = (f t g) u (f t g) and f u (g t h) = (f u g) t (f u g)

The following result is found in [6{9].

Theorem 3 Let L be the subalgebra of convex normal functions. This sub-
algebra is a De Morgan algebra under the operations t and u, :, and the
constants �0 and �1.

A lattice is complete if every subset has both a join (least upper bound) and
a meet (greatest lower bound). It is a well-known fact of order theory that
it is su�cent to show the existence of joins to establish completeness. It is
the purpose of this note to investigate questions related to the completeness
of L with respect to the operations t and u, and of two subalgebras of L.
In Section 2, we present our primary tool in this investigation|we show L is
isomorphic to the setD of all decreasing functions from [0; 1] to [0; 2] that have
1 as an accumulation point of their image. This allows us to replace the rather
complicated de�nition of the order on L with the usual pointwise ordering of
functions in D.

In Section 3, we use the tools developed in Section 2 to show that L is a
complete distributive lattice. We also show the sublattice L1 of convex normal
functions that attain the value 1 is a complete distributive lattice by similar
methods. While both L and L1 are complete and distributive, neither satis�es
the in�nite distributive law x^ (W yj) = W

(x^ yj), hence neither is a Heyting
algebra [1].

In Section 4 we also consider the lattice Lu of convex normal functions that are
upper semicontinuous. This lattice was considered in [5] where it was shown
to form a complete Heyting algebra. Using again the techniques from Section
2, we give a proof of the completeness of Lu. In Section 5, we continue to
show Lu is a continuous lattice in the sense of Gierz et al. [4]. This has as a
consequence that Lu is a Heyting algebra.

This paper concludes with a few remarks and questions in Section 6.

2 Another view of the order

As L is a lattice under the operations u;t of M, it has a partial ordering v
de�ned through this lattice structure. It is the purpose of this section to realize
v in another, more intuitive way. The idea is simply to \straighten out" convex

4



functions to obtain monotone ones, then to consider the ordinary pointwise
ordering on these monotone functions. Before beginning this process, we make
a simple observation about the ordering v.

Proposition 4 For f; g 2 L, these are equivalent.

(1) f v g
(2) gL � fL and fR � gR

Proof. Assume that f v g, so that f u g = f and f t g = g. By Theorem 1,
f u g = (f _ g)^ gR^ fR and f t g = (f _ g)^ fL^ gL. As f u g = f , we have
f � gR, whence fR � gR, and as f t g = g, we have g � fL, whence gL � fL.

Now assume gL � fL and fR � gR. As f ug = (f _ g)^gR^fR and fR � gR,
we have, f u g = (f _ g)^ fR. Clearly f � (f _ g)^ fR. But g � gL � fL, so
(f _ g) ^ fR � fL ^ fR = f . Thus f u g = f , showing f v g.

We recall that I represents the closed unit interval [0; 1] and we shall use I�

for the closed interval [0; 2]. The key feature of I� is that it can be viewed
as I with a copy of the dual of I on top, with the top element of I and the
bottom element of the dual copy of I identi�ed. We now make precise the idea
of \straightening out" a convex function f .

De�nition 5 For f : I ! I de�ne f � : I ! I� by setting

f �(x) =

8><>: 2� f(x) if f(x) = f
L(x)

f(x) otherwise

While de�ned for any function, we only consider f � in the case that f is
convex and normal. Roughly, f � is produced by taking the mirror image of
the increasing portion of f about the line y = 1, and leaving the remainder of
f alone. The following diagram illustrates the situation.

���
���

����QQ
Q
Q
QQ

1

0 1

f

XXXXXXXXXX
Q
Q
Q
Q
QQ

1

2

0 1

f �
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While we consider the convolution ordering v on L, we shall consider the
ordinary pointwise ordering of functions � for functions from I to I�. Our
key result follows below. In its proof, and elsewhere, we use repeatedly two
consequences of convexity and normality|for each x in I, at least one of fL (x)
and fR (x) equals f (x), and at least one of fL (x) and fR (x) equals 1.

Proposition 5 For f; g 2 L, f v g if and only if f � � g�.

Proof. Assume f v g. Consider possibilities for x. First, suppose g(x) <
gL(x). Then g� (x) = g (x) = gR (x) � fR (x) � f (x) and the strict inequality
f (x) � g (x) < gL (x) � fL (x) implies f � (x) = f (x) : It follows that f � (x) �
g� (x).

Now suppose that g (x) = gL (x). If f (x) = fL (x) is also true, then g (x) �
f (x) so f � (x) = 2 � f (x) � 2 � g (x) = g� (x). If f (x) < fL (x), then
f � (x) = f (x) � 1 � 2� g (x) = g� (x).

Now assume f � � g�. To show f v g, by Proposition 4 it is enough to show
gL � fL and fR � gR. Again, consider possibilities for x. First suppose
g(x) < gL(x). Then g� (x) = g (x) = gR (x) < 1 and gL (x) = 1. Also, f � (x) �
g� (x) < 1 implies f � (x) = f (x) = fR (x) < fL (x). Thus fR (x) � gR (x) and
fL (x) = gL (x) = 1.

Now suppose that g (x) = gL (x), so g� (x) = 2� g (x). If we also have f (x) =
fL (x), then g� (x) = 2 � g (x) � f � (x) = 2 � f (x) implies gL (x) = g (x) �
f (x) = fL (x). Also, in this case, fR (x) = gR (x) = 1. Finally, we have the
situation that g (x) = gL (x) � gR (x) = 1 and f (x) < fL (x) = 1. Then
clearly, gL (x) � fL (x) = 1 and fR (x) � gR (x) = 1.

We next describe the functions that arise as f � for some convex normal f .

Proposition 6 For g : I ! I� these are equivalent.

(1) g = f � for some f 2 L.
(2) g is decreasing and 1 is an accumulation point of the image of g.

Proof. As f 2 L, one sees that J =
n
x j f (x) = fL (x)

o
is an initial segment

of I, that f is increasing on J , and that f is decreasing on I�J . As f � = 2�f
on J , f � is decreasing on J , and as f � = f on I�J , f � is decreasing on I�J .
Then as f � � 1 on J and f � � 1 on I � J , it follows that f � is decreasing on
I. As 1 is the supremum of f , for " > 0 there is x with f (x) within distance
" of 1. Then both f (x) and 2� f (x) lie within " of 1, hence f � (x) lies within
" of 1. So 1 is an accumulation point of the image of f �.

Now assume that g is decreasing and 1 is an accumulation point of the image of
g. Set f (x) = min fg (x) ; 2� g (x)g. As f is the pointwise meet of a decreasing
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and increasing function, it is convex. It cannot be that both g (x) and 2�g (x)
are greater than 1, so 0 � f (x) � 1. As 1 is an accumulation point of the
image of g, for " > 0, there is an x with g (x) within " of 1. Then g (x) and
2� g (x) are within " of 1, hence so is f (x). It follows that f is normal, hence
f 2 L:

Let J = fx j 2� g (x) � g (x)g. Then J is an initial segment of I, f (x) =
2 � g (x) on J , and as 2 � g (x) is increasing, we have f = fL on J . Thus
f � (x) = 2 � (2� g (x)) = g (x) on J . For x 2 I � J we have f (x) = g (x) <
2�g (x). In particular, f (x) < 1. As f is decreasing on I�J and the supremum
of f is 1, there is some y < x with f (y) > f (x). Then f (x) 6= fL (x), so
f � (x) = f (x) = g (x).

De�nition 6 We de�ne sets D and D1 as follows:

(1) D = fg j g : I ! I� is decreasing and 1 is an accumulation point of the
image of gg.

(2) D1 = fg j g : I ! I� is decreasing and g(x) = 1 for some x 2 Ig.

It is common to consider the collection of all order preserving functions from
one poset to another. It is easily seen, and very well known, that the order
preserving functions from a poset to a complete lattice form a complete lattice
under the pointwise operations. Obviously a similar result holds for order
inverting, or decreasing functions. So the sets D and D1 form subsets of a
rather familiar lattice, the lattice of all decreasing functions from I to I�.

Proposition 7 Both D and D1 are sublattices of the lattice of decreasing
functions from I to I�.

Proof. Suppose f; g 2 D. We will show f ^ g 2 D where ^ is the pointwise
meet. This only requires us to show 1 is an accumulation point of the image
of f ^ g. Given � > 0 there are x; y with f(x) and g(y) within � of 1. Suppose
x � y. Then 1� � < f(x) < 1 + � and as g is decreasing 1� � < g(y) � g(x).
It follows that 1 � � < (f ^ g)(x) < 1 + �. Similarly, f _ g also has 1 as an
accumulation point of its image. So D is a sublattice. The argument for D1 is
easier.

Theorem 8 (L;v;u;t) is isomorphic to (D;�;^;_) and (L1;v;u;t) is iso-
morphic to (D1;�;^;_).

Proof. In each case, the mapping f ; f � provides the required order-
isomorphism.
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3 Completeness of the lattice of convex normal functions

Theorem 8 has the immediate consequence of showing both L and L1 are
isomorphic to sublattices of the complete lattice (I�)I of all functions from I
to I�. We shall show that both L and L1 are complete, by showing both D
and D1 are complete. However, we will see that D and D1 are not complete
sublattices of (I�)I as in�nite joins and meets in D and D1 are not always
pointwise.

De�nition 7 For a 2 I let 1a and 10a be functions from I to I� where 1a takes
value 1 at a and 0 otherwise, while 10a takes value 1 at a and value 2 otherwise.

Theorem 9 Let (fj)J be a family in D and set a = supfx j WJ fj(x) � 1g
and b = supfx j VJ fj(x) � 1g. Then
(1) If

W
J fj belongs to D this is the join of this family in D. Otherwise

W
J fj_

1a is the join of this family in D.
(2) If

V
J fj belongs to D this is the meet of this family in D. OtherwiseV

J fj ^ 10b is the meet of this family in D.

Proof. Let f =
W
J fj. If f 2 D then it is surely the least upper bound of

this family in D. If f does not belong to D, then as f is decreasing, this can
only be because 1 is not an accumulation point of the image of f . So there is
some � > 0 bounding the image of f away from 1. By the de�nition of a we
have f(x) � 1 for all x < a, and f(x) < 1 for all x > a. Thus f(x) � 1 + � for
all x < a and f(x) � 1 � � for all x > a. We claim f(a) � 1 � �. Otherwise,
f(a) � 1+�. So there would be fj with fj(a) � 1+�=2. But as fj is decreasing
this would yield fj(x) � 1 + �=2 for all x � a, and as fj � f we would have
fj(x) � 1 � � for all x > a. This would contradict 1 being an accumulation
point of the image of fj. Thus f(a) � 1� �. It follows that f _1a is decreasing
and takes value 1 at a, hence belongs to D, and is clearly an upper bound of
the family (fj)J . Suppose g 2 D is another upper bound of this family. Then
g � f , so g(x) � 1 + � for all x < a. As 1 is an accumulation point of the
image of g, it must be an accumulation point of the image of the restriction of
g to the interval [a; 1]. Then as g is decreasing, we must have g(a) � 1. Thus
g � f _ 1a. This shows f _ 1a is the least upper bound of this family in D.
The proof of the second statement is similar.

Theorem 10 Let (fj)J be a family in D1 and set a = supfx j
W
J fj(x) � 1g

and b = supfx j VJ fj(x) � 1g. Then
(1) If

W
J fj belongs to D1 this is the join of this family in D1. OtherwiseW

J fj _ 1a is the join of this family in D1.
(2) If

V
J fj belongs to D1 this is the meet of this family in D1. OtherwiseV

J fj ^ 10b is the meet of this family in D1.
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Proof. Let f =
W
J fj. If f 2 D1 then it is surely the least upper bound of

this family in D1. If f 62 D, then the previous theorem shows f _ 1a is the
least upper bound of (fj)J in D, and as f _ 1a belongs to D1 it is the least
upper bound of this family in D1 as well. The remaining possibility is that
f 2 D but f 62 D1. In this case we have f(x) > 1 for all x < a and f(x) < 1
for all x > a. We claim f(a) < 1. If not, then f(a) > 1 would imply there is
fj with fj(a) > 1. Then as fj is decreasing and fj � f we have fj(x) > 1 for
all x � a and fj(x) < 1 for all x > a. This would mean fj never takes the
value 1 contrary to fj belonging to D1. So f(a) < 1, and this shows f _ 1a is
decreasing and takes the value 1, hence belongs to D1. So f _ 1a is an upper
bound of this family in D1. If g is another such upper bound, then f � g, so
g(x) > 1 for all x < a. Then as g is decreasing and takes the value 1 we must
have g(a) � 1, hence f _ 1a � g. So f _ 1a is the least upper bound of this
family in D1. The second statement is similar.

A complete distributive lattice is meet-continuous if x ^ W yj = W
(x ^ yj). It

is well known that a complete distributive lattice is a Heyting algebra if and
only if it is meet-continuous [1]. A distributive lattice that is continuous in
the sense of Gierz, et al. (see Section 5) is also meet-continuous [3] (p. 57)
or [4] (p. 56). We show that neither the complete lattice L of convex normal
functions, nor the complete lattice L1 of convex strictly normal functions, is
meet-continuous. It follows that neither is a Heyting algebra, nor a continuous
lattice. Again, it is more convenient to work through their isomorphic copies
D and D1.

Proposition 11 Neither D nor D1 satis�es x ^
W
yj =

W
(x ^ yj).

Proof. Suppose 0 < b < 1 and de�ne a family of functions fn by setting

fn(x) =

8>>>>><>>>>>:
2 if x < b� 1

n

1 if b� 1
n
� x < b

0 if b � x

Here we only de�ne fn for n large enough to ensure b � 1
n
> 0. Note that

these functions are decreasing and take the value 1, hence belong to D1 and
therefore also to D. As the pointwise join

W
fn takes only the values 0 and 2

it does not belong to D. Therefore f =
W
fn _ 1b is the join of the family fn

in both D and D1. These functions are shown below.
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Consider the functions � and �0 shown below. Surely both are decreasing and
take the value 1, hence belong to both D and D1.
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b0 1

1
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1
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�

td dt t
b0 1

1
2

1

2

�0

It is clear that � � f , hence � ^ f = �, while � ^ fn = �0 for each n. WritingS
fn for the join of the family fn in either D or D1, we have � ^

S
fn = � >

�0 =
S
� ^ fn in both D and D1. Thus neither lattice satis�es the indicated

distributive law.

4 Completeness and semicontinuity

A function f is lower semicontinuous if the set fx j f(x) � �g is closed for
each real �, and upper semicontinuous if each set fx j f(x) � �g is closed.
These are abbreviated as lsc and usc respectively. It is well known [3,4] that
the lower semicontinuous functions from I to I, or for that matter from I to I�,
form a very special type of complete distributive lattice known as continuous
distributive lattice. In particular, this lattice of lower semicontinuous functions
is a complete Heyting algebra. Dually, the upper semicontinuous functions
from I to itself form a dual continuous lattice, hence a complete dual Heyting
algebra. In this section we consider semicontinuity in the setting of convex
normal functions.
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De�nition 8 Let LU be the set of convex, normal, upper semicontinuous func-
tions from I to I.

This collection of functions has been studied in [5] where it was shown to
form a complete Heyting algebra. Here we consider it from the perspective of
decreasing functions from I to I� and establish again that LU forms a complete
Heyting algebra. In the following section will use these results to show further
that LU forms a continuous lattice.

Proposition 12 For a function g 2 D these are equivalent.

(1) g = f � for some f 2 LU .
(2) g�1[�; 2� �] is closed for each 0 � � � 1.
(3) g_1 is lsc and g^1 is usc, where 1 is the constant function with value

1.

Further, these conditions imply that g attains the value 1.

Proof. Let g = f � where f is upper semicontinuous. So fx j � � f(x)g
is closed. We show this set equals g�1[�; 2 � �]. If f(x) = fL(x) then as
1 � 2 � f(x) = f �(x) we have � � f(x) if and only if � � f �(x) � 2 � �. If
f(x) 6= fL(x) then as f(x) = f �(x) and 1 � 2 � � we have � � f(x) if and
only if � � f �(x) � 2� �. Thus (1) implies (2).

Now assume g�1[�; 2��] is closed for each 0 � � � 1. To show g_1 is lsc it
is enough to show (g_1)�1[0; 2��] is closed for each 0 � � � 1. As g 2 D, we
have 1 is an accumulation point of the image of g, so X = g�1[�; 2��] is non-
empty. Say x 2 X. Then as g_1 is decreasing, we haveX = g�1[�; 2��][[x; 1],
hence is closed. The argument to show g^1 is usc is similar. Thus (2) implies
(3).

Finally, assume that g _ 1 is lsc and g ^ 1 is usc. As g 2 D, we have shown
in Proposition 6 the function f de�ned by f(x) = minfg(x); 2�g(x)g belongs
to L and satis�es g = f �. But for 0 � � � 1 we have � � f(x) if and only if
� � g(x) and � � 2 � g(x), which is equivalent to � � g(x) � 2 � �. Thus
f�1[�; 1] = g�1[�; 2� �], hence is closed. So f is usc so belongs to LU . Thus
(3) implies (1).

To see that g attains the value 1, note that for 0 � � < 1 the sets g�1[�; 2��]
form a decreasing family of closed sets. As 1 is an accumulation point of the
image of g, we have that each of these sets is non-empty. As I is compact,
the intersection of this family of sets is non-empty, providing some x with
g(x) = 1.

De�nition 9 We call a function g 2 D that satis�es the the conditions of
Proposition 12 a band semicontinuous function, and let DU denote the
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collection of all such g.

Proposition 13 (LU ;v) is isomorphic to (DU ;�).

Proof. DU is the image of LU under the order embedding f ; f �.

Our next task is to explore the lattice properties of DU , and hence of LU .
As the union and intersection of two closed sets is closed, it follows that the
pointwise join and meet of two lsc functions is lsc and the pointwise join and
meet of two usc functions is usc. Further, as the intersection of any family
of closed sets is closed, the pointwise join of any family of lsc functions is
lsc, and the pointwise meet of any family of usc functions is usc. It follows
from this that for any function f there is a largest lsc function f� beneath
f , the pointwise join of all lsc functions beneath f , and there is a smallest
usc function f+ above f .

Proposition 14 DU is a lattice with �nite joins and meets being pointwise.

Proof. It is enough to show that if f; g 2 DU then f _g and f ^g are in DU .
We have seen that both are elements of D. Note (f _ g)_1 = (f _1)_ (g_1)
and (f _ g)^ 1 = (f ^ 1)_ (g ^ 1). By part 3 of Proposition 12 it follows that
(f _ g) _ 1 is the join of two lsc functions, hence is lsc, and (f _ g) ^ 1 is
the join of two usc functions, hence is usc. By Proposition 12 it follows that
f _ g belongs to DU . The argument showing f ^ g belongs to DU is similar.

Corollary 15 DU and LU are distributive lattices.

We next consider the matter of in�nite joins and meets in DU . In the follow-
ing proposition, f+ denotes the pointwise meet of all usc functions above f ,
and f� denotes the pointwise join of all lsc functions beneath f , as in the
discussion before Proposition 14.

Proposition 16 Let (fj)J be a family in DU and set f =
W
J fj and g =

V
J fj.

(1) The join of this family in DU is f _ (f ^ 1)+.
(2) The meet of this family in DU is (g _ 1)� ^ g.

Proof. Let k = f _ (f ^ 1)+ and note k is decreasing. To see that 1 is an
accumulation point of its image, suppose that the image of k is disjoint from
(1� �; 1 + �). Let X = k�1(1 + �=2; 2]. Note that X is an initial segment of I.
Further, as each fj(1) � 1 we have k(1) � 1, soX is a proper segment. As f_1
is the join of the lsc functions fj_1, it is lsc, and as X = (f_1)�1(1+�=2; 2]
we have X is open. For x 62 X we have k(x) � 1� �, so (f ^ 1)+(x) � 1� �.
Thus the inverse image of [1��=2; 2] under (f^1)+ is the open set X, contrary
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to (f ^ 1)+ being usc. This shows k 2 D.

As (f ^ 1)+ � 1 we have (f _ (f ^ 1)+) _ 1 = f _ 1 and (f _ (f ^ 1)+) ^ 1 =
(f ^ 1) _ (f ^ 1)+ = (f ^ 1)+. Thus k _ 1 = f _ 1 and k ^ 1 = (f ^ 1)+.
As noted above f _ 1 is lsc and by de�nition (f ^ 1)+ is usc, it follows by
Proposition 12 that k belongs to DU .

As f � k we have that k is an upper bound of the family (fj)J in DU . If
h 2 DU is another such upper bound, then fj � h for each J 2 J . Thus f � h
in the pointwise order. This then gives f ^ 1 � h ^ 1, hence (f ^ 1)+ � h ^ 1
as h ^ 1 is usc. This then shows k = f _ (f ^ 1)+ � h. The �rst statement is
then established, and the second follows similarly.

De�nition 10 We use
Q
and

P
for in�nite meets and joins in DU . Since

�nite meets and joins in DU are given pointwise, we use ^ and _ for these.

Lemma 17 If f; g are decreasing maps from I to I�, then (f ^g)+ = f+^g+.

Proof. As f is decreasing, its discontinuities are simple jump discontinuities
and f+ is de�ned by adjusting the value at these discontinuities so that the
result is continuous from the left. Thus, for each x > 0 we have f+(x) =
infff(y) j y < xg and f+(0) = f(0). Obviously (f ^ g)+(0) = f+(0) ^ g+(0).
For x > 0 we then have that (f ^ g)+(x) = inff(f ^ g)(y) j y < xg =
infff(y) j y < xg ^ inffg(y) j y < xg and this is equal to f+(x) ^ g+(x).

Proposition 18 DU satis�es the in�nite distributive law g^
P
J fj =

P
J (g ^ fj),

hence is a complete Heyting algebra.

Proof. Suppose g and (fj)J belong to DU and set f =
W
J fj, the pointwise

join. Then using the above description of joins in DU we have
P
J fj = f _

(f ^ 1)+ and clearly WJ (g ^ fj) = g ^ f . Thus
g ^

X
J

fj =(g ^ f) _ (g ^ (f ^ 1)+)X
J

(g ^ fj)= (g ^ f) _ (g ^ f ^ 1)+

Note (f ^1)+ � 1, so g^ (f ^1)+ = (g^1)^ (f ^1)+. As g belongs to DU we
have g^1 is usc, so the above lemma yields (g^1)^(f^1)+ = (g^1^f^1)+.
Thus the two equations above are equal.

To conclude this section we address the obvious question of why one considers
band semicontinuous functions inD rather than upper or lower semicontinuous
ones. The simple answer is that the usc functions inD do not form a complete
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lattice, nor do the lsc ones. One sees this by taking a family of continuous
functions taking the value 2 from 0 to 1=2��, dropping rapidly, then taking the
value 0 from 1=2 to 1. The pointwise join of these functions takes value 2 on the
interval [0; 1=2) and value 0 on [1=2; 1]. One can surely �nd a least decreasing
usc function above this, but there is no least decreasing usc function, having
1 as an accumulation point of its image, above it. Similar comments hold for
lsc functions.

5 Continuous lattices and semicontinuity

As we mentioned earlier, it is well known that the lsc functions on I form a
special type of lattice called a continuous lattice. In this section we show that
the lattice DU , hence also the lattice LU , is a distributive, continuous lattice.
We recall a few basics. For more detail the reader should consult [3] or [4].

De�nition 11 Let L be a complete lattice. For elements x; y 2 L we say x is
way below y and write x � y, if whenever S � L and y � W

S there is a
�nite S 0 � S with x � W

S 0. The lattice L is called a continuous lattice if
every element of L is the join of the elements that are way below it.

A simple example of a continuous lattice is provided by the unit interval I.
Here we have x � y if and only if x < y. It is well known [3,4] that a
distributive continuous lattice satis�es the in�nite distributive law x^W yj =W
(x ^ yj) hence is a complete Heyting algebra. Thus, neither of the complete

distributive lattices L nor L1 is continuous.

De�nition 12 For 0 < a � 1 and 0 � � � 1 de�ne functions fa;� and ga;�
by

fa;�(x) =

8>>>>><>>>>>:
2� � if x < a

1 if x = a

0 if a < x

and ga;�(x) =

8>>>>><>>>>>:
1 if x = 0

� if 0 < x � a

0 if a < x

Diagrams of these functions are given below.
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a0 1

�

1
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Lemma 19 Each fa;� and ga;� belong to DU and every element of DU is a
join of such elements.

Proof. Clearly each fa;� and ga;� is decreasing and takes the value 1. One
easily sees they are band semi-continuous, so belong to DU . Suppose that
h 2 DU , let � be the collection of all fa;� and ga;� that lie beneath h, and set
h0 =

P
�. Surely h0 � h, we claim equality.

Consider �rst the case of x 2 I with h(x) = � being strictly greater than 1.
Note, as h(x) > 1 we have x < 1. Suppose 0 < � < ��1. As h(x) = � we have
x belongs to (h_ 1)�1(�� �; 2]. As h_ 1 is lsc this inverse image is open, so
there is some y in this set with x < y. As (h _ 1)(y) > � � � > 1, we have
h(y) > �� �. As h is decreasing we have fy;��� � h, giving that this function
belongs to �. Thus fy;��� � h0. As x < y, we then have �� � � h0(x). As this
holds for all 0 < � < �� 1, it follows that � � h0(x), hence h0(x) = h(x).

Consider next the case where x 2 I with h(x) = � where � � 1. If x 6= 0,
then as h is decreasing we have gx;� � h. So gx;� � h0, and as gx;�(x) = �, it
follows that h0(x) = h(x). If x = 0, then as h(x) � 1 we must have h(x) = 1
as h 2 DU . Then g1;0 is the function taking value 1 at 0 and 0 elsewhere, so
g1;0 � h, hence g1;0 � h0, and this gives h0(1) = 1.

Lemma 20 Suppose 0 < a � 1 and 0 � � < 1.

(1) If 0 < a0 < a and � < �0 < 1 then fa0;�0 � fa;�.
(2) fa;� =

Pffa0;�0 j 0 < a0 < a and � < �0 < 1g.
Proof. For the �rst statement suppose that a0 < a00 < a. If fa;� �

P
gj then

as fa;�(a
00) = 2�� > 1 we have P gj(a00) � 2�� > 1. From the description of

joins given in Proposition 16 we have
P
gj(a

00) =
W
gj(a

00). Thus there is some
gj with gj(a

00) � 2 � �0. Then fa0;�0 � gj. For the second statement one sees
that fa;� is even the pointwise join of this family.
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The diagram below at left illustrates Lemma 20, the one at right is for Lemma 21.

t dt

d d

t

t

t d

aa0 1

2� �

2� �0

1 tdd t
d d

t
aa0 1

�
�0

1

Lemma 21 Suppose 0 < a � 1 and 0 < � � 1.

(1) If 0 < a0 < a and 0 < �0 < � then ga0;�0 � ga;�.
(2) ga;� =

Pfga0;�0 j 0 < a0 < a and 0 < �0 < �g.
Proof. For the �rst statement suppose that a0 < a00 < a. If ga;� �

P
fj then

we claim there is some fj with fj(a
00) � �0. If not, then for the function h

de�ned to take value 2 on [0; a00), value 1 at a00, and value �0 on (a00; 1], we
have h 2 DU and each fj � h. This would give

P
fj � h, hence ga;� � h.

But ga;�(a) = � and h(a) � h(a00) = �0, a contradiction. Suppose then that
fj is such that fj(a

00) � �0. As fj(0) � 1 and fj is decreasing, it follows that
ga0;�0 � fj. For the second statement, let S be the set fga0;�0 j 0 < a0 < a
and 0 < �0 < �g. For g = W

S we have g agrees with ga;� except at a where
g(a) = 0 and ga;�(a) = �. By Proposition 16 we have

P
S = g _ (g ^ 1)+. As

(g ^ 1)+ is usc and decreasing it is continuous from the left, so takes value �
at a. Thus

P
S = ga;�.

Theorem 22 DU is a continuous lattice.

Proof. As every member of DU is a join of functions of the form fa;� and
ga;�, it is enough to show that each such function is the join of some family of
functions way below it. Lemma 20 provides this for all fa;� except for those
where � = 1, and Lemma 21 provides this for all ga;� except for those where
� = 0. But fa;1 = ga;1, so each of these is the join of ones way below it, and
ga;0 is the least element of the lattice DU , hence is way below itself.

6 Conclusion

The lattice DU of band semicontinuous decreasing functions, and its alter-
ego LU of convex normal upper semicontinuous functions, have a number of
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desirable properties. These lattices are distributive continuous lattices. As a
consequence of this, they are complete Heyting algebras. But there is more.
The unary operation : on L de�ned by :f(x) = f(1� x) clearly restricts to
a unary operation on LU . Thus LU is a De Morgan algebra. Hence it is also a
dual continuous lattice, and a dual Heyting algebra. It might be of interest to
determine the dual space of this lattice. We have not done so.

As the latticeDU is a continuous lattice, its Lawson topology [3,4] is a compact
and Hausdor� topology on DU making the meet operation ^ continuous. It
may be of interest to examine properties of this topology further. For instance,
if we take all functions fa;� and ga;� as in De�nition 12, but for a and �
rational, we obtain a countable subset of DU . Taking �nite joins of members
of this family gives a countable basis of DU in the sense of [3] (p. 168). So by
[3] (p. 172) the Lawson topology on DU is metrizable. It may be of interest to
�nd a metric for this topology.

As a �nal comment, we note that many of our results may be adaptable to a
wider setting. Indeed, rather than considering maps from the unit interval I to
itself, one can consider maps from any chain to another, or more generally from
any poset to another. While generalizing the convolution ordering directly may
have its problems, it seems a simpler matter to work through the method of
decreasing functions. Indeed, for a posets P and Q one can construct Q� to
be the poset Q with a dual copy of Q placed on top. One then considers the
decreasing functions from P to Q� in an analogous way to what was done with
I and I�. It would perhaps be of some interest to make a general study of this
construction.
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